在橢圓+上,為焦點 且,則的面積為(   )

A. B. C. D.

A

解析試題分析:由橢圓的定義得——————(1)
由余弦定理得,
-----------(2)
解(1)(2)聯(lián)立得方程組得|PF1|·|PF2|=,
∴D F1PF2的面積為S=|PF1|×|PF2| sin60°=,故選A。
考點:本題主要考查橢圓的定義,橢圓的幾何性質,余弦定理,三角形面積公式。
點評:小綜合題,涉及橢圓的焦點三角形問題,往往要利用橢圓的定義。本題與余弦定理相結合,進一步可求三角形面積。本題很典型。

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:單選題

已知點、分別是雙曲線的左、右焦點,過且垂直于軸的直線與雙曲線交于、兩點,若為銳角三角形,則該雙曲線的離心率的取值范圍是

A. B. C.(1,2) D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知橢圓,過橢圓右焦點F的直線L交橢圓于A、B兩點,交y軸于P點。設,則等于(   )
A.         B.         C.          D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知<4,則曲線有(  )

A.相同的準線 B.相同的焦點 C.相同的離心率 D.相同的長軸

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

方程表示雙曲線,則的取值范圍是(    )

A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

經過橢圓的右焦點作傾斜角為的直線,交橢圓于A、B兩點,O為坐標原點,則  ( )
A. -3           B.             C . -3或            D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知橢圓與雙曲線有相同的焦點,若的等比中項,的等差中項,則橢圓的離心率是(   )

A. B. C. D. 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知拋物線方程為,直線的方程為,在拋物線上有一動點軸的距離為,到直線的距離為,則的最小值  (     )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

從拋物線上一點P引拋物線準線的垂線,垂足為M,且|PM|=5,設拋物線的焦點為F,則△MPF的面積(   )

A.5 B.10 C.20 D.

查看答案和解析>>

同步練習冊答案