已知直線l過點(2,1),點O是坐標原點
(1)若直線l在兩坐標軸上截距相等,求直線l方程;
(2)若直線l與x軸正方向交于點A,與y軸正方向交于點B,當△AOB面積最小時,求直線l方程.
【答案】分析:(1)設方程為y=kx或x+y+a=0,代入點的坐標,即可求直線l方程;
(2)設方程為(a>0,b>0),則,利用基本不等式,即可得到結論.
解答:解:(1)設方程為y=kx或x+y+a=0,則
將(2,1)代入,可得k=,或a=-3
∴直線l方程為x-2y=0或x+y-3=0;
(2)設方程為(a>0,b>0),則

∴ab≥8,當且僅當a=4,b=2時,取等號
此時,△AOB面積最小,最小值為4
∴直線l方程為
點評:本題考查直線方程,考查基本不等式的運用,考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知直線l過點(2,1),點O是坐標原點
(1)若直線l在兩坐標軸上截距相等,求直線l方程;
(2)若直線l與x軸正方向交于點A,與y軸正方向交于點B,當△AOB面積最小時,求直線l方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l過點(2,1),且在兩坐標軸上的截距互為相反數(shù),則直線l的方程為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l過點(2,1)和點(4,3).
(Ⅰ)求直線l的方程;
(Ⅱ)若圓C的圓心在直線l上,且與y軸相切于(0,3)點,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l過點(-2,0),當直線l與圓x2+y2=2x有兩個交點時,其斜率k的取值范圍是
(-
2
4
,
2
4
(-
2
4
,
2
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l過點(-2,0),當直線l與圓x2-2x+y2=0有兩個交點時,其斜率k的取值范圍是( 。
A、(-2
2
,2
2
B、(-
2
,
2
C、(-
1
4
2
,
1
4
2
D、(-
1
8
1
8

查看答案和解析>>

同步練習冊答案