【題目】從裝有n+1個球(其中n個白球,1個黑球)的口袋中取出m個球(0<m≤n,m,n∈N),共有 種取法.在這 種取法中,可以分成兩類:一類是取出的m個球全部為白球,共有 種取法;另一類是取出的m個球有m﹣1個白球和1個黑球,共有 種取法.顯然 ,即有等式: 成立.試根據(jù)上述思想化簡下列式子: =

【答案】Cn+km
【解析】解:在Cnm+Ck1Cnm﹣1+Ck2Cnm﹣2+…+CkkCnm﹣k中,

從第一項到最后一項分別表示:

從裝有n個白球,k個黑球的袋子里,

取出m個球的所有情況取法總數(shù)的和,

故答案應為:從從裝有n+k球中取出m個球的不同取法數(shù)Cn+km

所以答案是:Cn+km

【考點精析】解答此題的關鍵在于理解類比推理的相關知識,掌握根據(jù)兩類不同事物之間具有某些類似(或一致)性,推測其中一類事物具有與另外一類事物類似的性質(zhì)的推理,叫做類比推理.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lnx,g(x)= +bx(a≠0)
(Ⅰ)若a=﹣2時,函數(shù)h(x)=f(x)﹣g(x)在其定義域內(nèi)是增函數(shù),求b的取值范圍;
(Ⅱ)在(Ⅰ)的結論下,設φ(x)=e2x+bex , x∈[0,ln2],求函數(shù)φ(x)的最小值;
(Ⅲ)設函數(shù)f(x)的圖象C1與函數(shù)g(x)的圖象C2交于點P、Q,過線段PQ的中點R作x軸的垂線分別交C1、C2于點M、N,問是否存在點R,使C1在M處的切線與C2在N處的切線平行?若存在,求出R的橫坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax(a>0,a≠1)在區(qū)間[﹣1,2]上的最大值為8,最小值為m.若函數(shù)g(x)=(3﹣10m) 是單調(diào)增函數(shù),則a=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,BC=a,AC=b,且a,b是方程的兩根,2cos(A+B)=1

(1)求∠C的度數(shù);

(2)求AB的長;

(3)求△ABC的面積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱柱ABC﹣A1B1C1的側(cè)棱與底面邊長都相等,A1在底面ABC上的射影D為BC的中點,則異面直線AB與CC1所成的角的余弦值為( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知四面體ABCD的頂點都在球O表面上,且AB=BC=AC=2 ,DA=DB=DC=2,過AD作相互垂直的平面α、β,若平面α、β截球O所得截面分別為圓M、N,則(
A.MN的長度是定值
B.MN長度的最小值是2
C.圓M面積的最小值是2π
D.圓M、N的面積和是定值8π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正四棱錐P﹣ABCD中,AB=2,PA= ,E是棱PC的中點,過AE作平面分別與棱PB、PD交于M、N兩點.
(1)若PM= PB,PN=λPD,求λ的值;
(2)求直線PA與平面AMEN所成角的正弦值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正三棱柱ABC﹣A1B1C1中,點D是BC的中點.

(1)求證:A1C∥平面AB1D;
(2)設M為棱CC1的點,且滿足BM⊥B1D,求證:平面AB1D⊥平面ABM.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足:2a1+22a2+23a3+…+2nan=n(n∈N*),數(shù)列{ }的前n項和為Sn , 則S1S2S3…S10=

查看答案和解析>>

同步練習冊答案