已知曲線C?x2-y2=1及直線l:y=kx-1.
(1)若l與C左支交于兩個(gè)不同的交點(diǎn),求實(shí)數(shù)k的取值范圍;
(2)若l與C交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),且△AOB的面積為
2
,求實(shí)數(shù)k的值.
(1)由
x2-y2=1
y=kx-1
消去y,得(1-k2)x2+2kx-2=0.
∵l與C左支交于兩個(gè)不同的交點(diǎn)
1-k2≠0
△=4k2+8(1-k2)>0
且x1+x2=-
2k
1-k2
<0,x1x2=-
2
1-k2
>0
∴k的取值范圍為(-
2
,-1)
(2)設(shè)A(x1,y1)、B(x2,y2),
由(1)得x1+x2=-
2k
1-k2
,x1x2=-
2
1-k2

又l過點(diǎn)D(0,-1),
∴S△OAB=
1
2
|x1-x2|=
2

∴(x1-x22=(2
2
2,即(-
2k
1-k2
2+
8
1-k2
=8.
∴k=0或k=±
6
2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓
x2
16
+
y2
12
=1,點(diǎn)P為其上一點(diǎn),F(xiàn)1、F2為橢圓的焦點(diǎn),Q為射線F1P延長(zhǎng)線上一點(diǎn),且|PQ|=|PF2|,設(shè)R為F2Q的中點(diǎn).
(1)當(dāng)P點(diǎn)在橢圓上運(yùn)動(dòng)時(shí),求R形成的軌跡方程;
(2)設(shè)點(diǎn)R形成的曲線為C,直線l:y=k(x+4
2
)與曲線C相交于A、B兩點(diǎn),若∠AOB=90°時(shí),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,O為坐標(biāo)原點(diǎn),直線l在x軸和y軸上的截距分別是a和b(a>0,b≠0),且交拋物線y2=2px(p>0)于M(x1,y1),N(x2,y2)兩點(diǎn).
(1)寫出直線l的截距式方程;
(2)證明:
1
y1
+
1
y2
=
1
b
;
(3)當(dāng)a=2p時(shí),求∠MON的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知雙曲線的兩條漸近線方程為直線l1:y=-
x
2
l2:y=
x
2
,焦點(diǎn)在y軸上,實(shí)軸長(zhǎng)為2
3
,O為坐標(biāo)原點(diǎn).
(1)求雙曲線方程;
(2)設(shè)P1,P2分別是直線l1和l2上的點(diǎn),點(diǎn)M在雙曲線上,且
P1M
=2
MP2
,求三角形P1OP2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線L過點(diǎn)P(2,0),斜率為
4
3
,直線L和拋物線y2
=2x相交于A,B兩點(diǎn),設(shè)線段AB的中點(diǎn)為M,求:
(1)P,M兩點(diǎn)間的距離/PM/:(2)M點(diǎn)的坐標(biāo);(3)線段AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線y=x-1被y2=x截得的弦長(zhǎng)為( 。
A.3B.2
3
C.
10
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知兩點(diǎn)F1(-
2
,0)
,F2(
2
,0)
,滿足條件|PF2|-|PF1|=2的動(dòng)點(diǎn)P的軌跡是曲線E,直線l:y=kx-1與曲線E交于A、B兩點(diǎn).
(Ⅰ)求k的取值范圍;
(Ⅱ)如果|AB|=6
3
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓
x2
8
+
y2
4
=1
上的點(diǎn)到直線x-y+6=0的距離的最小值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線y2=2px(p>0)的焦點(diǎn)F與雙曲
x2
4
-
y2
5
=1
的右焦點(diǎn)重合,拋物線的準(zhǔn)線與x軸的交點(diǎn)為K,點(diǎn)A在拋物線上且|AK|=
2
|AF|
,則A點(diǎn)的橫坐標(biāo)為( 。
A.2
2
B.3C.2
3
D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案