已知函數(shù)f(x)=
x2+2x+a
x
(x≥1),若a為正常數(shù),求f(x)的最小值.
考點:函數(shù)的最值及其幾何意義
專題:不等式的解法及應(yīng)用
分析:根據(jù)基本不等式的性質(zhì),討論a的取值范圍,即可求出f(x)的最小值.
解答: 解:∵f(x)=
x2+2x+a
x
=x+2+
a
x
在(0,
a
)上單調(diào)遞減,在(
a
,+∞)上單調(diào)遞增,
∴若
a
≤1,即0<a≤1時,函數(shù)f(x)在[1,+∞)上單調(diào)遞增,此時函數(shù)f(x)的最小值為f(1)=3+a,
a
>1,即a>1時,此時函數(shù)f(x)的最小值為f(
a
)=2+2
a
點評:本題主要考查函數(shù)最值的求解,根據(jù)基本不等式的性質(zhì)以及函數(shù)y=x+
a
x
的性質(zhì)是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=alnx+
2(1-x)
1+x
(a∈R)定義域為(0,1),則f(x)的圖象不可能是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)若實數(shù)s,t是方程20x2+14x+1=0的兩不等實根,求值:s2+t2;
(Ⅱ)若實數(shù)s,t分別滿足20s2+14s+1=0,t2+14t+20=0且st≠1,求值:
st+4s+1
t

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知矩形ABCD,AB=4,AD=3,O是AC上一點,CO=
9
5
,E,F(xiàn)分別是AB,CD的中點,現(xiàn)把矩形ABCD沿著對角線AC折成一個大小為θ的二面角D′-AC-B.
(Ⅰ)若θ=90°,求證BO⊥AD′;
(Ⅱ)當(dāng)θ=60°時,求直線EF與平面ABC所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x∈R,a∈R且a≠0,向量
OA
=(acos2x,1),
OB
=(2,
3
asin2x-a),f(x)=
OA
OB

(Ⅰ)求函數(shù)f(x)的解析式,并求當(dāng)a>0時,f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng)x∈[0,
π
2
]時,f(x)的最大值為5,求a的值.
(Ⅲ)當(dāng)a=1時,若不等式|f(x)-m|<2在x∈[0,
π
2
]上恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|2-a<x<2+a},B={x|(x+3)(x-5)<0}
(1)若a=1,求A∩B
(2)若A⊆B,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x>0},B={x|x2-(a+b)x+ab<0,a,b∈R},D=A∩B,函數(shù)f(x)=x3+x2+bx+1
(1)當(dāng)b=1時,求函數(shù)f(x)在點(1,f(1))處的切線方程;
(2)當(dāng)a=b+1,且f(x)在D上有極小值時,求b的取值范圍;
(3)在(2)的條件下,不等式f(x)≤1對任意的x∈D恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y=x2-2ax的定義域為{x|0≤x≤1}.求此函數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某校高三某班的一次測試成績的頻率分布表以及頻率分布直方圖中的部分?jǐn)?shù)據(jù)如下,請根據(jù)此解答如下問題:
(1)求班級的總?cè)藬?shù);
(2)將頻率分布表及頻率分布直方圖的空余位置補充完整;
(3)若要從分?jǐn)?shù)在[80,100)之間的試卷中任取兩份分析學(xué)生失分情況,在抽取的試卷中,求至少有一份分?jǐn)?shù)在[90,100)之間的概率.
分組頻數(shù)頻率
[50,60) 0.08
[60,70)7 
[70,80)10 
[80,90)  
[90,100)2 

查看答案和解析>>

同步練習(xí)冊答案