知函數(shù)y=sin2ωx+
3
sinωxcosωx-1(ω>0)周期為2π.求:當(dāng)x∈[0,π]時(shí)y的取值范圍.
分析:利用二倍角公式以及兩角和的正弦函數(shù),化簡函數(shù)為一個(gè)角的一個(gè)三角函數(shù)的形式,通過函數(shù)的周期公式求出ω,通過x 的范圍,求出相位的范圍,然后求出函數(shù)的值的范圍.
解答:解:y=
1
2
(1-cos2ωx)+
3
2
sin2ωx-1
…(4分)(每個(gè)公式的應(yīng)用得2分)
=sin(2ωx-
π
6
)-
1
2
…(6分)
因?yàn)?span id="pv5z9vl" class="MathJye">T=
=2π,所以ω=
1
2
…(8分)
y=sin(x-
π
6
)-
1
2
…(9分)
因?yàn)?≤x≤π,所以-
π
6
≤x-
π
6
6
…(10分)
-
1
2
≤sin(x-
π
6
)≤1
…(12分)
故  -1≤y≤
1
2
…(14分)
點(diǎn)評:本題是基礎(chǔ)題,考查三角函數(shù)的化簡求值,函數(shù)的周期公式的應(yīng)用,考查計(jì)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

知函數(shù)y=sin2ωx+
3
sinωxcosωx-1(ω>0)周期為2π.求:當(dāng)x∈[0,π]時(shí)y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年安徽省安慶市望江中學(xué)高三(上)第四次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

知函數(shù)y=sin2ωx+sinωxcosωx-1(ω>0)周期為2π.求:當(dāng)x∈[0,π]時(shí)y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007年廣東省汕頭市潮陽一中高三摸底數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

知函數(shù)y=sin2ωx+sinωxcosωx-1(ω>0)周期為2π.求:當(dāng)x∈[0,π]時(shí)y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007年廣東省汕頭市潮陽一中高三摸底數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

知函數(shù)y=sin2ωx+sinωxcosωx-1(ω>0)周期為2π.求:當(dāng)x∈[0,π]時(shí)y的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案