如圖,在平面直角坐標系中,設點(),直線:,點在直線上移動,是線段與軸的交點, 過、分別作直線、,使, .
(1)求動點的軌跡的方程;
(2)在直線上任取一點做曲線的兩條切線,設切點為、,求證:直線恒過一定點;
(3)對(2)求證:當直線的斜率存在時,直線的斜率的倒數(shù)成等差數(shù)列.
(1).(2)利用導數(shù)法求出直線AB的方程,然后再利用直線橫過定點知識解決.(3)用坐標表示出斜率,然后再利用等差中項的知識證明即可
【解析】
試題分析:(1)依題意知,點是線段的中點,且⊥,
∴是線段的垂直平分線.∴.
故動點的軌跡是以為焦點,為準線的拋物線,其方程為:.
(2)設,兩切點為,
由得,求導得.
∴兩條切線方程為 ①
②
對于方程①,代入點得,,又
∴整理得:
同理對方程②有
即為方程的兩根.
∴ ③
設直線的斜率為,
所以直線的方程為,展開得:
,代入③得:
∴直線恒過定點.
(3) 證明:由(2)的結(jié)論,設, ,
且有,
∴
∴
=
又∵,所以
即直線的斜率倒數(shù)成等差數(shù)列.
考點:本題考查了拋物線與導數(shù)、數(shù)列的綜合考查
點評:解答拋物線綜合題時,應根據(jù)其幾何特征熟練的轉(zhuǎn)化為數(shù)量關系(如方程、函數(shù)),再結(jié)合代數(shù)方法解答,這就要學生在解決問題時要充分利用數(shù)形結(jié)合、設而不求、弦長公式及韋達定理綜合思考,重視對稱思想、函數(shù)與方程思想、等價轉(zhuǎn)化思想的應用
科目:高中數(shù)學 來源: 題型:
OP |
OA |
OB |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
A、偶函數(shù) | B、奇函數(shù) | C、不是奇函數(shù),也不是偶函數(shù) | D、奇偶性與k有關 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
1 |
6 |
1 |
6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
試問:是否存在定點E、F,使|ME|、|MB|、|MF|成等差數(shù)列?若存在,求出E、F的坐標;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com