【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=3n2+8n,{bn}是等差數(shù)列,且an=bn+bn+1
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)令cn= ,求數(shù)列{cn}的前n項(xiàng)和Tn

【答案】
(1)

解:Sn=3n2+8n,

∴n≥2時(shí),an=Sn﹣Sn1=6n+5,

n=1時(shí),a1=S1=11,∴an=6n+5;

∵an=bn+bn+1,

∴an1=bn1+bn,

∴an﹣an1=bn+1﹣bn1

∴2d=6,

∴d=3,

∵a1=b1+b2

∴11=2b1+3,

∴b1=4,

∴bn=4+3(n﹣1)=3n+1


(2)

解:cn= = =6(n+1)2n,

∴Tn=6[22+322+…+(n+1)2n]①,

∴2Tn=6[222+323+…+n2n+(n+1)2n+1]②,

①﹣②可得﹣Tn=6[22+22+23+…+2n﹣(n+1)2n+1]=12+6× ﹣6(n+1)2n+1=(﹣6n)2n+1=﹣3n2n+2

∴Tn=3n2n+2


【解析】(1)求出數(shù)列{an}的通項(xiàng)公式,再求數(shù)列{bn}的通項(xiàng)公式;(2)求出數(shù)列{cn}的通項(xiàng),利用錯(cuò)位相減法求數(shù)列{cn}的前n項(xiàng)和Tn . ;本題考查數(shù)列的通項(xiàng)與求和,著重考查等差數(shù)列的通項(xiàng)與錯(cuò)位相減法的運(yùn)用,考查分析與運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地政府調(diào)查了工薪階層人的月工資收人,并根據(jù)調(diào)查結(jié)果畫出如圖所示的頻率分布直方圖,其中工資收人分組區(qū)間是.(單位:百元)

(1)為了了解工薪階層對(duì)工資收人的滿意程度,要用分層抽樣的方法從調(diào)查的人中抽取人做電話詢問,求月工資收人在內(nèi)應(yīng)抽取的人數(shù);

(2)根據(jù)頻率分布直方圖估計(jì)這人的平均月工資為多少元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

已知函數(shù)=(sin x+cos x)2+cos 2x.

(1)求函數(shù)的最小正周期;

(2)求函數(shù)在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三個(gè)頂點(diǎn)坐標(biāo)分別為:直線經(jīng)過點(diǎn)

(1)外接圓的方程

(2)若直線相交于兩點(diǎn),且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,D是AC的中點(diǎn),EF∥DB.

(1)已知AB=BC,AE=EC,求證:AC⊥FB;
(2)已知G,H分別是EC和FB的中點(diǎn),求證:GH∥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線與拋物線相交于兩點(diǎn).

(1)求證:“如果直線過點(diǎn),那么”是真命題;

(2)寫出(1)中命題的逆命題,判斷它是真命題還是假命題,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 )的左右焦點(diǎn)分別為 ,短軸兩個(gè)端點(diǎn)為, ,且四邊形是邊長(zhǎng)為的正方形。

(1)求橢圓的方程;

(2)已知圓的方程是,過圓上任一點(diǎn)作橢圓的兩條切線, ,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在棱長(zhǎng)為1的正方體ABCDA1B1C1D1中,EBC的中點(diǎn),

平面B1EDA1D1F。

(1)指出FA1D1上的位置,并說明理由;

(2)求直線A1CDE所成的角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)滿足:對(duì)任意x∈(0,+∞),恒有f(2x)=2f(x)成立;當(dāng)x∈(1,2]時(shí),f(x)=2﹣x.若f(a)=f(2020),則滿足條件的最小的正實(shí)數(shù)a的值為( 。

A. 28 B. 100 C. 34 D. 36

查看答案和解析>>

同步練習(xí)冊(cè)答案