【題目】1)閱讀下列材料并填空:對于二元一次方程組,我們可以將、的系數(shù)和相應(yīng)的常數(shù)項排成一個數(shù)表,求得的一次方程組的解,用數(shù)表可表示為.用數(shù)表可以簡化表達解一次方程組的過程如下,請補全其中的空白:,從而得到該方程組的解集________;

2)仿照(1)中數(shù)表的書寫格式寫出解方程組的過程.

【答案】1)下行上行,,;(2)見解析.

【解析】

1)根據(jù)數(shù)表的計算可知由的步驟為上行下行,然后利用題意利用數(shù)表計算可得出,由此可得出原方程組的解集;

2)將方程組表示為數(shù)表,利用數(shù)表的計算可得出,由此可得出原方程組的解集.

1)根據(jù)數(shù)表的計算可知由的步驟為:上行下行,

,因此,原方程組的解集為;

2.

所以原方程組的解集為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把函數(shù)的圖象上所有點的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變)得到函數(shù)的圖象,已知函數(shù) 則當(dāng)函數(shù)4個零點時的取值集合為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,多面體ABCDA1B1C1D1為正方體,則下面結(jié)論正確的是(  )

A.A1BB1C

B.平面CB1D1⊥平面A1B1C1D1

C.平面CB1D1∥平面A1BD

D.異面直線ADCB1所成的角為30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下四個命題中錯誤的是(

A.樣本頻率分布直方圖中的小矩形的面積就是對應(yīng)組的頻率

B.回歸直線過樣本點的中心

C.若樣本的平均數(shù)是2,方差是2,則數(shù)據(jù)的平均數(shù)是4,方差是4

D.拋擲一顆質(zhì)地均勻的骰子,事件“向上點數(shù)不大于3”和事件“向上點數(shù)不小于4”是對立事件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《中國詩詞大會》(二季)亮點頗多,十場比賽每場都有一首特別設(shè)計的開場詩詞,在聲光舞美的配合下,百人團齊聲朗誦,別有韻味.若《將進酒》《山居秋暝》《望岳》《送杜少府之任蜀州》和另確定的兩首詩詞排在后六場,且《將進酒》排在《望岳》的前面,《山居秋暝》與《送杜少府之任蜀州》不相鄰且均不排在最后,則后六場的排法有( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線的方程為

1)當(dāng)時,求直線與坐標(biāo)軸圍成的三角形的面積;

2)證明:不論取何值,直線恒過第四象限.

3)當(dāng)時,求直線上的動點到定點,距離之和的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

如圖,在平面直角坐標(biāo)系xOy中,平行于x軸且過點A(3,2)的入射光線 l1

被直線ly=x反射.反射光線l2y軸于BC過點A且與l1, l2 都相切.

(1)l2所在直線的方程和圓C的方程;

(2)設(shè)分別是直線l和圓C上的動點,求的最小值及此時點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高三理科班共有名同學(xué)參加某次考試,從中隨機挑出名同學(xué),他們的數(shù)學(xué)成績與物理成績如下表:

數(shù)學(xué)成績

物理成績

1)數(shù)據(jù)表明之間有較強的線性關(guān)系,求關(guān)于的線性回歸方程;

2)本次考試中,規(guī)定數(shù)學(xué)成績達到分為優(yōu)秀,物理成績達到分為優(yōu)秀.若該班數(shù)學(xué)優(yōu)秀率與物理優(yōu)秀率分別為,且除去抽走的名同學(xué)外,剩下的同學(xué)中數(shù)學(xué)優(yōu)秀但物理不優(yōu)秀的同學(xué)共有人,請寫出列聯(lián)表,判斷能否在犯錯誤的概率不超過的前提下認為數(shù)學(xué)優(yōu)秀與物理優(yōu)秀有關(guān)?

參考數(shù)據(jù):;;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(I)若處取得極值,求過點且與處的切線平行的直線方程;

(II)當(dāng)函數(shù)有兩個極值點,且時,總有成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案