分析 (1)把要解的不等式等價轉(zhuǎn)化為與之等價的三個不等式組,求出每個不等式組的解集,再取并集,即得所求;
(2)不等式可化為|x+$\frac{1}{2}$|-|x|≤1+$\frac{a}{2}$,求出左邊的最小值,即可得出結(jié)論.
解答 解:(1)x≤-$\frac{1}{2}$時,-1-2x+x≥2,∴x≤-3;
-$\frac{1}{2}<x<0$時,2x+1+x≥2,∴x$≥\frac{1}{3}$,不符合;
x≥0時,x+1≥2,∴x≥1,
綜上所述,不等式的解集為(-∞,-3]∪[1,+∞);
(2)不等式可化為|x+$\frac{1}{2}$|-|x|≤1+$\frac{a}{2}$,
∵||x+$\frac{1}{2}$|-|x||≤|x+$\frac{1}{2}$-x|=$\frac{1}{2}$
∴1+$\frac{a}{2}$≥-$\frac{1}{2}$,
∴a≥-3,
∴a的最小值為-3.
點評 本題主要考查絕對值三角不等式,絕對值不等式的解法,體現(xiàn)了轉(zhuǎn)化、分類討論的數(shù)學(xué)思想,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,$\frac{π}{3}$] | B. | [$\frac{π}{12}$,$\frac{7π}{12}$] | C. | [$\frac{π}{3}$,$\frac{5π}{6}$] | D. | [$\frac{5π}{6}$,π] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $4\sqrt{5}$ | B. | $\sqrt{3}$ | C. | $3\sqrt{3}$ | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [1,2) | B. | (1,2] | C. | (1,2) | D. | [1,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第16項 | B. | 第24項 | C. | 第26項 | D. | 第28項 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若m∥l,則α∥β | B. | 若α⊥β,則m∥l | C. | 若m⊥l,則α∥β | D. | 若α∥β,則m⊥l |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | -$\frac{1}{2}$ | C. | 1或-$\frac{1}{2}$ | D. | -1或-$\frac{1}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com