已知F1、F2是橢圓的左、右焦點,P為橢圓上一個點,且|PF1|:|PF2|=1:2,則tan∠F1PF2=    ,PF2的斜率為   
【答案】分析:利用橢圓的定義,結(jié)合三角函數(shù)的定義可求∠F1PF2的正切值,求出tan∠PF2F1==,可得PF2的斜率.
解答:解:由題意,|PF1|+|PF2|=6,|F1F2|=4,
∵|PF1|:|PF2|=1:2,∴|PF1|2,|PF2|=4,
∴△PF1F2為等腰三角形,底邊上的高為=
∴tan∠F1PF2=
由等面積可得,P到x軸的距離為
=
∴tan∠PF2F1==
∴PF2的斜率為
故答案為:
點評:本題考查橢圓的定義,考查三角函數(shù)的定義,考查學(xué)生的計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的兩個焦點,若在橢圓上存在一點P,使∠F1PF2=120°,則橢圓離心率的范圍是
[
3
2
,1
[
3
2
,1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2是橢圓
y2
a2
+
x2
b2
=1(a>b>0)
的兩個焦點,若橢圓上存在點P使得∠F1PF2=120°,求橢圓離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2是橢圓的兩個焦點.△F1AB為等邊三角形,A,B是橢圓上兩點且AB過F2,則橢圓離心率是
3
3
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知 F1、F2是橢圓
x2
a2
+
y2
b2
=1(a>b>0)的兩個焦點,橢圓上存在一點P,使得SF1PF2=
3
b2
,則該橢圓的離心率的取值范圍是
[
3
2
,1)
[
3
2
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2是橢圓
x2
2
+y2=1
的兩個焦點,點P是橢圓上一個動點,那么|
PF1
+
PF2
|
的最小值是( 。

查看答案和解析>>

同步練習(xí)冊答案