下面四個(gè)命題:(1)若數(shù)列{an}是等差數(shù)列,則數(shù)列{Cna}(C>0)為等比數(shù)列;(2)若各項(xiàng)為正數(shù)的數(shù)列{an}為等比數(shù)列,則數(shù)列{logcan}(C>0且≠1)為等差數(shù)列;(3)常數(shù)列既是等差數(shù)列,又是等比數(shù)列;(4)兩個(gè)正數(shù)的等差中項(xiàng)不小于它們的等比中項(xiàng),其中,真命題的個(gè)數(shù)是:( 。
A、1個(gè)B、2個(gè)C、3個(gè)D、4個(gè)
分析:根據(jù)數(shù)列的有關(guān)性質(zhì),對四個(gè)命題分別進(jìn)行判斷,從而得到正確結(jié)果.
解答:解:(1)∵數(shù)列{an}是等差數(shù)列,∴{an}的各項(xiàng)份別為a1,a1+d,a1+2d,…,a1+(n-1)d,
數(shù)列{Cna}(C>0)的各項(xiàng)為c1a,c2a,c3a,…,cna,由此無法斷定數(shù)列{Cna}(C>0)是等比數(shù)列.故(1)不正確.
(2)∵{an}的各項(xiàng)分別為a1,a1q,a1q2,…,a1qn-1,∴{logcan}(C>0且≠1)的各項(xiàng)分別是logca1,logca1+logcq,logca1+2logcq,…,logca1+(n-1)logcq.由此可以斷定{logcan}(C>0且≠1)是等差數(shù)列,故(2)是真命題.
(3)各項(xiàng)都是0的常數(shù)項(xiàng)是等差數(shù)列,但不是等比數(shù)列,故(3)不正確.
(4)當(dāng)a>0,b>0時(shí),
a+b
2
ab
,故(4)是真命題.
故選C.
點(diǎn)評:解題時(shí)注意全面考慮,避免考慮欠周而出現(xiàn)錯(cuò)誤.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下面四個(gè)命題:
(1)f(x)=
x-2
+
1-x
是函數(shù);
(2)f(x)=
x-2(x≥2)
-x+1(x≤2)
是分段函數(shù);
(3)函數(shù)的定義域或值域可以是空集;
(4)函數(shù)y=x2+2x+3(x∈N)的圖象是一條拋物線.
其中正確的有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間中,給出下面四個(gè)命題:
(1)過一點(diǎn)有且只有一個(gè)平面與已知直線垂直;
(2)若平面外兩點(diǎn)到平面的距離相等,則過兩點(diǎn)的直線必平行于該平面;
(3)兩條相交直線在同一平面的射影必為相交直線;
(4)兩個(gè)相互垂直的平面,一個(gè)平面內(nèi)的任意一直線必垂直于另一平面內(nèi)的無數(shù)條直線.
其中正確的命題的序號是
(1)(4)
(1)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下面四個(gè)命題:
(1)函數(shù)y=x2-5x+4,x∈[-1,1]的最大值為10,最小值為-
9
4
;
(2)函數(shù)y=2x2-4x+1,x∈[2,4]的最大值為17,最小值為1;
(3)函數(shù)y=x3-12x,x∈[-3,3]的最大值為16,最小值為-16;
(4)函數(shù)y=x3-12x,x∈[-2,2]無最大值,無最小值.
其中正確的命題有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于曲線C:
x2
4-k
+
y2
k-1
=1,給出下面四個(gè)命題:
(1)曲線C不可能表示橢圓;
(2)若曲線C表示焦點(diǎn)在x軸上的橢圓,則1<k<
5
2
;
(3)若曲線C表示雙曲線,則k<1或k>4;
(4)當(dāng)1<k<4時(shí)曲線C表示橢圓,
其中正確的是( 。

查看答案和解析>>

同步練習(xí)冊答案