計算下列各式
(1)(2
7
9
)0.5+(0.1)-2+(2
10
27
)-
2
3
-3π°+
37
48
;
(2)(lg2)2+lg20×lg5.
考點:對數(shù)的運算性質(zhì),有理數(shù)指數(shù)冪的化簡求值
專題:函數(shù)的性質(zhì)及應用
分析:(1)利用指數(shù)的運算法則即可得出.
(2)利用對數(shù)的運算法則及其lg2+lg5=1即可得出.
解答: 解:(1)原式=(
5
3
)2×0.5
+10-1×(-2)+(
4
3
)3×(-
2
3
)
-3+
37
48

=
5
3
+100+
9
16
-3+
37
48

=100.
(2)原式=(lg2)2+(2lg2+lg5)×lg5
=lg22+2lg2lg5+lg25
=(lg2+lg5)2
=1.
點評:本題考查了指數(shù)與對數(shù)的運算法則及其lg2+lg5=1,屬于基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

函數(shù)y=logax (0<a<1)的圖象大致是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等比數(shù)列{an}中,
a2+a3
a1+a2
=2,a4=8,則a6=(  )
A、31B、32C、63D、64

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=ex•sinx,f′(x)是函數(shù)f(x)的導函數(shù),則f′(π)等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}中,a1=2,a8=58,an+1=an+cn(c為常數(shù)),則c的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}中,a2+a4=6,則前5項和S5為(  )
A、5B、6C、15D、30

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設Sn是等差數(shù)列{an}的前項n和,S5=5(a2+a8),且a3、a5是首項為2的等比數(shù)列{bn}的相鄰兩項,則b2=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設A,B,C為全集R的子集,定義A-B=A∩(∁RB)( 。
A、若A∩B⊆A∩C,則B⊆C
B、若A∩B⊆A∩C,則A∩(B-C)=∅
C、若A-B⊆A-C,則B?C
D、若A-B⊆A-C,則A∩(B-C)=∅

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合:A={x|-1<x≤5},B={x|m-5≤x≤2m+3}且A⊆B,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案