已知實(shí)數(shù)x、y滿足,則z=x+2y+m的最大值為21,則m=   
【答案】分析:本題考查的知識點(diǎn)是簡單線性規(guī)劃的應(yīng)用,我們要先畫出滿足約束條件的平面區(qū)域,然后分析平面區(qū)域里各個角點(diǎn),然后將其代入x+2y+m中,求出x+2y+m的最大值即可求出結(jié)論.
解答:解:滿足約束條件的平面區(qū)域如圖示:
聯(lián)立:即C(7,9)
由圖得,當(dāng)過點(diǎn)C(7,9)時,x+2y+m有最大值:7+18+m=21⇒m=-4.
故答案為:-4.
點(diǎn)評:在解決線性規(guī)劃的小題時,我們常用“角點(diǎn)法”,其步驟為:①由約束條件畫出可行域⇒②求出可行域各個角點(diǎn)的坐標(biāo)⇒③將坐標(biāo)逐一代入目標(biāo)函數(shù)⇒④驗證,求出最優(yōu)解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足
x-y+2≥0
x+y≥0
x≤1
,則z=2x+y的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x、y滿足
x≥1
y≥2
x+y≤4
,則u=
x+y
x
的取值范圍是
[2,4]
[2,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足
x+y≤2
x-y≤2
0≤x≤1
,則z=2x-3y的最大值是
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足
y2-x≤0
x+y≤2
,則2x+y的最小值為
-
1
8
-
1
8
,最大值為
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•安徽模擬)已知實(shí)數(shù)x,y滿足|2x+y+1|≤|x+2y+2|,且|y|≤1,則z=2x+y的最大值為( 。

查看答案和解析>>

同步練習(xí)冊答案