-
3
≤θ≤
3
,則sinθ的取值范圍是
 
分析:先根據(jù)θ的范圍可確定-
π
2
π
2
均在此范圍內(nèi),再結(jié)合正弦函數(shù)的最值和單調(diào)性可直接得到答案.
解答:解:∵-
3
≤θ≤
3
,
當(dāng)θ=-
π
2
時(shí),sinθ=-1,當(dāng)θ=
π
2
時(shí),sinθ=1
∴-1≤sinθ≤1
故答案為:[-1,1]
點(diǎn)評(píng):本題主要考查正弦函數(shù)的最值.考查對(duì)基礎(chǔ)知識(shí)的理解程度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•黃埔區(qū)一模)對(duì)于函數(shù)y=f(x)與常數(shù)a,b,若f(2x)=af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個(gè)“P數(shù)對(duì)”;若f(2x)≥af(x)+b恒成立,則稱(a,b)為函數(shù)f(x)的一個(gè)“類P數(shù)對(duì)”.設(shè)函數(shù)f(x)的定義域?yàn)镽+,且f(1)=3.
(1)若(1,1)是f(x)的一個(gè)“P數(shù)對(duì)”,求f(2n)(n∈N*);
(2)若(-2,0)是f(x)的一個(gè)“P數(shù)對(duì)”,且當(dāng)x∈[1,2)時(shí)f(x)=k-|2x-3|,求f(x)在區(qū)間[1,2n)(n∈N*)上的最大值與最小值;
(3)若f(x)是增函數(shù),且(2,-2)是f(x)的一個(gè)“類P數(shù)對(duì)”,試比較下列各組中兩個(gè)式子的大小,并說(shuō)明理由.
①f(2-n)與2-n+2(n∈N*);
②f(x)與2x+2(x∈(0,1]).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•棗莊二模)已知拋物線x2=2py上點(diǎn)(2,2)處的切線經(jīng)過(guò)橢圓E:
y2
a2
+
x2
b2
=1(a>b>0)
的兩個(gè)頂點(diǎn).
(1)求橢圓E的方程;
(2)過(guò)橢圓E的上頂點(diǎn)A的兩條斜率之積為-4的直線與該橢圓交于B,C兩點(diǎn),是否存在一點(diǎn)D,使得直線BC恒過(guò)該點(diǎn)?若存在,請(qǐng)求出定點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)在(2)的條件下,若△ABC的重心為G,當(dāng)邊BC的端點(diǎn)在橢圓E上運(yùn)動(dòng)時(shí),求|GA|2+|GB|2+|GC|2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•上海模擬)以下有四個(gè)命題:
①一個(gè)等差數(shù)列{an}中,若存在ak+1>ak>O(k∈N),則對(duì)于任意自然數(shù)n>k,都有an>0;
②一個(gè)等比數(shù)列{an}中,若存在ak<0,ak+1<O(k∈N),則對(duì)于任意n∈N,都有an<0;
③一個(gè)等差數(shù)列{an}中,若存在ak<0,ak+1<0(k∈N),則對(duì)于任意n∈N,都有an<O;
④一個(gè)等比數(shù)列{an}中,若存在自然數(shù)k,使ak•ak+1<0,則對(duì)于任意n∈N,都有an.a(chǎn)n+1<0;
其中正確命題的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆廣東省東莞市高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(A)(解析版) 題型:解答題

根據(jù)以往資料統(tǒng)計(jì),大學(xué)生購(gòu)買某品牌平板電腦時(shí)計(jì)劃采用分期付款的期數(shù)ζ的分布列為

ζ

1

2

3

P

0.4

0.25

0.35

(1)若事件A={購(gòu)買該平板電腦的3位大學(xué)生中,至少有1位采用1期付款},求事件A的概率P(A);

(2)若簽訂協(xié)議后,在實(shí)際付款中,采用1期付款的沒(méi)有變化,采用2、3期付款的都至多有一次改付款期數(shù)的機(jī)會(huì),其中采用2期付款的只能改為3期,概率為;采用3期付款的只能改為2期,概率為.數(shù)碼城銷售一臺(tái)該平板電腦,實(shí)際付款期數(shù)與利潤(rùn)(元)的關(guān)系為

1

2

3

η

200

250

300

(3)求的分布列及期望E().

 

查看答案和解析>>

同步練習(xí)冊(cè)答案