已知A,B 分別為曲線C: +=1(y0,a>0)與x軸的左、右兩個(gè)交點(diǎn),直線過(guò)點(diǎn)B,且與軸垂直,S為上異于點(diǎn)B的一點(diǎn),連結(jié)AS交曲線C于點(diǎn)T.
(1)若曲線C為半圓,點(diǎn)T為圓弧的三等分點(diǎn),試求出點(diǎn)S的坐標(biāo);
(II)如圖,點(diǎn)M是以SB為直徑的圓與線段TB的交點(diǎn),試問(wèn):是否存在,使得O,M,S三點(diǎn)共線?若存在,求出a的值,若不存在,請(qǐng)說(shuō)明理由。w.w
.w.k.s.5.u.c.o.m
⑴⑵存在,使得O,M,S三點(diǎn)共線.
解法二:
解法一:
(Ⅰ)當(dāng)曲線C為半圓時(shí),如圖,由點(diǎn)T為圓弧的三等分點(diǎn)得∠BOT=60°或120°.
(1)當(dāng)∠BOT=60°時(shí), ∠SAE=30°.
又AB=2,故在△SAE中,有
(2)當(dāng)∠BOT=120°時(shí),同理可求得點(diǎn)S的坐標(biāo)為,綜上,
(Ⅱ)假設(shè)存在,使得O,M,S三點(diǎn)共線.
由于點(diǎn)M在以SB為直線的圓上,故.
顯然,直線AS的斜率k存在且k>0,可設(shè)直線AS的方程為.
由
設(shè)點(diǎn)
故,從而.
亦即
由得
由,可得即
經(jīng)檢驗(yàn),當(dāng)時(shí),O,M,S三點(diǎn)共線. 故存在,使得O,M,S三點(diǎn)共線.
解法二:
(Ⅰ)同解法一.
(Ⅱ)假設(shè)存在a,使得O,M,S三點(diǎn)共線.
由于點(diǎn)M在以SO為直徑的圓上,故.
顯然,直線AS的斜率k存在且K>0,可設(shè)直線AS的方程為
由
設(shè)點(diǎn),則有
故
由所直線SM的方程為
O,S,M三點(diǎn)共線當(dāng)且僅當(dāng)O在直線SM上,即.
故存在,使得O,M,S三點(diǎn)共線.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x2 |
a2 |
y2 |
b2 |
FB |
AB |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
x2 |
a2 |
y2 |
b2 |
|PF2|2 |
|PF1| |
A、(1,+∞) |
B、(0,3] |
C、(1,3] |
D、(0,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
|
|
π |
4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年福建省高二第二學(xué)期半期考試數(shù)學(xué)(理科)試題 題型:解答題
(本小題滿分14分)
如圖所示,已知曲線交于點(diǎn)O、A,直線與曲線、分別交于點(diǎn)D、B,連結(jié)OD,DA,AB.
(1)求證:曲邊四邊形ABOD(陰影部分:OB為拋物線。┑拿娣e的函數(shù)表達(dá)式為
(2)求函數(shù)在區(qū)間上的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com