已知命題“直線
與平面
有公共點”是真命題,那么下列命題:
①直線
上的點都在平面
內(nèi);
②直線
上有些點不在平面
內(nèi);
③平面
內(nèi)任意一條直線都不與直線
平行.其中真命題的個數(shù)是( )
試題分析:因為,命題“直線
與平面
有公共點”是真命題,即包括了兩種情況,一是直線
與平面
有一個公共點---相交;二是,直線
與平面
有無數(shù)多公共點---直線在平面內(nèi).所以,①直線
上的點都在平面
內(nèi),是假命題;②直線
上有些點不在平面
內(nèi),是假命題;③平面
內(nèi)任意一條直線都不與直線
平行,是假命題.故選A.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在四棱錐
中,
,
,
,
,
,
.
(Ⅰ)證明:
∥
;
(Ⅱ)若
求四棱錐
的體積
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在三棱柱
中,側(cè)棱
底面
,
,
,
,
.
(1)證明:
平面
;
(2)若
是棱
的中點,在棱
上是否存在一點
,使
平面
?證明你的結論.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,四棱柱
中,
平面
.
(Ⅰ)從下列①②③三個條件中選擇一個做為
的充分條件,并給予證明;
①
,②
;③
是平行四邊形.
(Ⅱ)設四棱柱
的所有棱長都為1,且
為銳角,求平面
與平面
所成銳二面角
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在直三棱柱(即側(cè)棱與底面垂直的三棱柱)
中,
,
為
的中點
(I)求證:平面
平面
;
(II)求
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設平面
與平面
相交于直線
,直線
在平面
內(nèi),直線
在平面
內(nèi),且
,則“
”是“
”的( )
A.充分不必要條件 | B.必要不充分條件 |
C.充要條件 | D.既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在直角梯形
中,
,
∥
,
,
為線段
的中點,將
沿
折起,使平面
⊥平面
,得到幾何體
.
(1)若
,
分別為線段
,
的中點,求證:
∥平面
;
(2)求證:
⊥平面
;
(3)
的值.
查看答案和解析>>