觀察下列圖形(1)(2)(3)(4)設(shè)第n個(gè)圖形包含f(n)個(gè)小正方形.則f(5)=( 。
A.25B.37C.41D.47

∵f(1)=1,f(2)=5,f(3)=13,f(4)=25,
∴f(2)-f(1)=4=4×1,f(3)-f(2)=8=4×2,f(4)-f(3)=12=4×3,f(5)-f(4)=16=4×4
∴f(5)=25+4×4=41.
故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(1)求證:當(dāng)時(shí),
(2)證明: 不可能是同一個(gè)等差數(shù)列中的三項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,圓周上按順時(shí)針?lè)较驑?biāo)有五個(gè)點(diǎn)。一只青蛙按順時(shí)針?lè)较蚶@圓從一個(gè)點(diǎn)跳到另一點(diǎn)。若它停在奇數(shù)點(diǎn)上,則下一次只能跳一個(gè)點(diǎn);若停在偶數(shù)點(diǎn)上,則跳兩個(gè)點(diǎn)。該青蛙從這點(diǎn)跳起,經(jīng)2008次跳后它將停在的點(diǎn)是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若數(shù)列中,。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若直線l與x、y軸分別交于A(a,0),B(0,b),ab≠0,則直線l的截距式方程為
x
a
+
y
b
=1
,若平面α與x、y、z軸分別交于A(a,0,0),B(0,b,0),C(0,0,c),abc≠0,則平面α的截距式方程為
x
a
+
y
b
+
z
c
=1
;由點(diǎn)P(x0,y0)到直線Ax+By+C=0的距離d=
|Ax0+By0+C|
A2+B2
類(lèi)比到空間有:點(diǎn)M(x0,y0,z0)到平面Ax+By+Cz+D=0的距離d=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖給出了一個(gè)“等差數(shù)陣”:其中每行、每列都是等差數(shù)列,aij表示位于第i行第j列的數(shù).
(Ⅰ)寫(xiě)出a45的值;
(Ⅱ)寫(xiě)出aij的計(jì)算公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

法國(guó)數(shù)學(xué)家費(fèi)馬觀察到221+1=5222+1=17,223+1=257,224+1=65537都是質(zhì)數(shù),于是他提出猜想:任何形如22n+1(n∈N*)的數(shù)都是質(zhì)數(shù),這就是著名的費(fèi)馬猜想.半個(gè)世紀(jì)之后,善于發(fā)現(xiàn)的歐拉發(fā)現(xiàn)第5個(gè)費(fèi)馬數(shù)225+1=4294967297=641×
6
700417
不是質(zhì)數(shù),從而推翻了費(fèi)馬猜想,這一案例說(shuō)明(  )
A.歸納推理,結(jié)果一定不正確
B.歸納推理,結(jié)果不一定正確
C.類(lèi)比推理,結(jié)果一定不正確
D.類(lèi)比推理,結(jié)果不一定正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在平面中△ABC的角C的內(nèi)角平分線CE分△ABC面積所成的比
S△ABC
S△BEC
=
AC
BC
,將這個(gè)結(jié)論類(lèi)比到空間:在三棱錐A-BCD中,平面DEC平分二面角A-CD-B且與AB交于E,則類(lèi)比的結(jié)論為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知正三角形內(nèi)切圓的半徑r與它的高h(yuǎn)的關(guān)系是:r=
1
3
h,把這個(gè)結(jié)論推廣到空間正四面體,則正四面體內(nèi)切球的半徑r與正四面體高h(yuǎn)的關(guān)系是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案