【題目】某校高三年級(jí)數(shù)學(xué)競(jìng)賽初賽考試后,對(duì)90分以上(含90分)的成績(jī)進(jìn)行統(tǒng)計(jì),其頻率分布直方圖如圖所示,已知成績(jī)?cè)?30~140分?jǐn)?shù)段的人數(shù)為2.

(1)求這組數(shù)據(jù)的平均數(shù)M.

(2)現(xiàn)根據(jù)初賽成績(jī)從第一組和第五組(從低分段至高分段依次為第一組、第二組、…、第五組)中任意選出兩人,形成幫扶小組.若選出的兩人的成績(jī)之差大于20,則稱這兩人為“黃金搭檔組”,試求選出的兩人為“黃金搭檔組”的概率.

【答案】(1)113;(2)

【解析】

試題分析:(1)由條件易得總?cè)藬?shù)為40,平均數(shù)等于各小矩形底邊中點(diǎn)橫坐標(biāo)與小矩形面積的乘積之和求得M113.(2)依題意第一組共有4人,第五組共有2人,從第一組和第五組中任意選出兩人共有15種選法,選出的兩人為黃金搭檔組”,若兩人成績(jī)之差大于20,則兩人分別來(lái)自第一組和第五組,共有8種選法,故概率為.

試題解析:設(shè)90140分之間的人數(shù)為n,由130140分?jǐn)?shù)段的人數(shù)為2,可知0.005×10×n2,得n40.

(1)平均數(shù)M95×0.1105×0.25115×0.45125×0.15135×0.05113.

(2)依題意第一組共有40×0.01×104人,記作A1A2,A3A4;第五組共有2人,記作B1,B2. 從第一組和第五組中任意選出兩人共有下列15種選法:

{A1,A2},{A1,A3},{A1,A4},{A1,B1}{A1,B2},{A2A3},{A2A4},{A2,B1},{A2,B2},{A3A4},{A3,B1},{A3,B2}{A4,B1},{A4,B2},{B1,B2}

設(shè)事件A:選出的兩人為黃金搭檔組

若兩人成績(jī)之差大于20,則兩人分別來(lái)自第一組和第五組,共有8種選法:

{A1,B1},{A2,B1},{A3,B1}{A4,B1}{A1,B2},{A2,B2},{A3B2},{A4,B2}

P(A).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線 與雙曲線 ,給出下列說(shuō)法,其中錯(cuò)誤的是(
A.它們的焦距相等
B.它們的焦點(diǎn)在同一個(gè)圓上
C.它們的漸近線方程相同
D.它們的離心率相等

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax2-ln x,a∈R.

(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程.

(2)討論f(x)的單調(diào)性.

(3)是否存在a,使得方程f(x)=2有兩個(gè)不等的實(shí)數(shù)根?若存在,求出a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=-x3+x2+b,g(x)=aln x.

(1)若f(x)在 上的最大值為,求實(shí)數(shù)b的值;

(2)若對(duì)任意x∈[1,e],都有g(shù)(x)≥-x2+(a+2)x恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在圓心角為90°的扇形AOB中,以圓心O作為起點(diǎn)作射線OC,OD,則使∠AOC+∠BOD<45°的概率為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義方程f(x)=f′(x)的實(shí)數(shù)根x0為函數(shù)f(x)的“和諧點(diǎn)”.如果函數(shù)g(x)=x2(x∈(0,+∞)),h(x)=sin x+2cosx,φ(x)=ex+x的“和諧點(diǎn)”分別為a,b,c,則a,b,c的大小關(guān)系是(  )

A. a<b<c B. b<c<a

C. c<b<a D. c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y=f(x﹣1)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱,且當(dāng)x∈(﹣∞,0),f(x)+xf′(x)<0成立.若a=(20.2)f(20.2),b=(ln2)f(ln2),c=(log2 )f(log2 ),則a,b,c的大小關(guān)系是(
A.a>b>c
B.b>a>c
C.c>a>b
D.a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)是定義在R上的偶函數(shù),對(duì)任意的x∈R,都有f(x+4)=f(x),且當(dāng)x∈[﹣2,0]時(shí),f(x)=( x﹣6,若在區(qū)間(﹣2,6]內(nèi)關(guān)于x的方程f(x)﹣loga(x+2)=0(a>1)恰有3個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍是(
A.(1,2)
B.(2,+∞)
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察以下各等式:

tan 30°+tan 30°+tan 120°=tan 30°·tan 30°·tan 120°,

tan 60°+tan 60°+tan 60°=tan 60°·tan 60°·tan 60°,

tan 30°+tan 45°+tan 105°=tan 30°·tan 45°·tan 105°.

分析上述各式的共同特點(diǎn),猜想出表示的一般規(guī)律,并加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案