【題目】某校高三年級(jí)數(shù)學(xué)競(jìng)賽初賽考試后,對(duì)90分以上(含90分)的成績(jī)進(jìn)行統(tǒng)計(jì),其頻率分布直方圖如圖所示,已知成績(jī)?cè)?30~140分?jǐn)?shù)段的人數(shù)為2.
(1)求這組數(shù)據(jù)的平均數(shù)M.
(2)現(xiàn)根據(jù)初賽成績(jī)從第一組和第五組(從低分段至高分段依次為第一組、第二組、…、第五組)中任意選出兩人,形成幫扶小組.若選出的兩人的成績(jī)之差大于20,則稱這兩人為“黃金搭檔組”,試求選出的兩人為“黃金搭檔組”的概率.
【答案】(1)113;(2)
【解析】
試題分析:(1)由條件易得總?cè)藬?shù)為40,平均數(shù)等于各小矩形底邊中點(diǎn)橫坐標(biāo)與小矩形面積的乘積之和求得M=113.(2)依題意第一組共有4人,第五組共有2人,從第一組和第五組中任意選出兩人共有15種選法,選出的兩人為“黃金搭檔組”,若兩人成績(jī)之差大于20,則兩人分別來(lái)自第一組和第五組,共有8種選法,故概率為.
試題解析:設(shè)90~140分之間的人數(shù)為n,由130~140分?jǐn)?shù)段的人數(shù)為2,可知0.005×10×n=2,得n=40.
(1)平均數(shù)M=95×0.1+105×0.25+115×0.45+125×0.15+135×0.05=113.
(2)依題意第一組共有40×0.01×10=4人,記作A1,A2,A3,A4;第五組共有2人,記作B1,B2. 從第一組和第五組中任意選出兩人共有下列15種選法:
{A1,A2},{A1,A3},{A1,A4},{A1,B1},{A1,B2},{A2,A3},{A2,A4},{A2,B1},{A2,B2},{A3,A4},{A3,B1},{A3,B2},{A4,B1},{A4,B2},{B1,B2}.
設(shè)事件A:選出的兩人為“黃金搭檔組”.
若兩人成績(jī)之差大于20,則兩人分別來(lái)自第一組和第五組,共有8種選法:
{A1,B1},{A2,B1},{A3,B1},{A4,B1},{A1,B2},{A2,B2},{A3,B2},{A4,B2},
故P(A)=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線 與雙曲線 ,給出下列說(shuō)法,其中錯(cuò)誤的是( )
A.它們的焦距相等
B.它們的焦點(diǎn)在同一個(gè)圓上
C.它們的漸近線方程相同
D.它們的離心率相等
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ax2-ln x,a∈R.
(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程.
(2)討論f(x)的單調(diào)性.
(3)是否存在a,使得方程f(x)=2有兩個(gè)不等的實(shí)數(shù)根?若存在,求出a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=-x3+x2+b,g(x)=aln x.
(1)若f(x)在 上的最大值為,求實(shí)數(shù)b的值;
(2)若對(duì)任意x∈[1,e],都有g(shù)(x)≥-x2+(a+2)x恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在圓心角為90°的扇形AOB中,以圓心O作為起點(diǎn)作射線OC,OD,則使∠AOC+∠BOD<45°的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義方程f(x)=f′(x)的實(shí)數(shù)根x0為函數(shù)f(x)的“和諧點(diǎn)”.如果函數(shù)g(x)=x2(x∈(0,+∞)),h(x)=sin x+2cosx,φ(x)=ex+x的“和諧點(diǎn)”分別為a,b,c,則a,b,c的大小關(guān)系是( )
A. a<b<c B. b<c<a
C. c<b<a D. c<a<b
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=f(x﹣1)的圖象關(guān)于點(diǎn)(1,0)對(duì)稱,且當(dāng)x∈(﹣∞,0),f(x)+xf′(x)<0成立.若a=(20.2)f(20.2),b=(ln2)f(ln2),c=(log2 )f(log2 ),則a,b,c的大小關(guān)系是( )
A.a>b>c
B.b>a>c
C.c>a>b
D.a>c>b
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)是定義在R上的偶函數(shù),對(duì)任意的x∈R,都有f(x+4)=f(x),且當(dāng)x∈[﹣2,0]時(shí),f(x)=( )x﹣6,若在區(qū)間(﹣2,6]內(nèi)關(guān)于x的方程f(x)﹣loga(x+2)=0(a>1)恰有3個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍是( )
A.(1,2)
B.(2,+∞)
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察以下各等式:
tan 30°+tan 30°+tan 120°=tan 30°·tan 30°·tan 120°,
tan 60°+tan 60°+tan 60°=tan 60°·tan 60°·tan 60°,
tan 30°+tan 45°+tan 105°=tan 30°·tan 45°·tan 105°.
分析上述各式的共同特點(diǎn),猜想出表示的一般規(guī)律,并加以證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com