(本小題滿分12分)
已知四棱錐的三視圖如圖所示,為正三角形.
(Ⅰ)在平面中作一條與底面平行的直線,并說明理由;
(Ⅱ)求證:平面;
(Ⅲ)求三棱錐的高.
(Ⅰ)分別取中點,連結,則即為所求,下證之:·········· 1分
∵ 分別為中點,
∴ .················································ 2分
∵ 平面,平面,··· 3分
∴ 平面.··································· 4分
(作法不唯一)
(Ⅱ)見解析;(Ⅲ) .
【解析】(I)在平面PCD內作一條與CD平行的直線即可.可以考慮作三角形PCD的中位線.
(II)由于PA垂直AC,所以只須證AC垂直AB即可.可以利用勾股定理進行證明.
(III)求三棱錐的高可以考慮其特殊性,采用換底的方法利用體積法求解是一條比較好的求解方法.本小題可以考慮利用進行求解.
(Ⅰ)分別取中點,連結,則即為所求,下證之:·········· 1分
∵ 分別為中點,
∴ .················································ 2分
∵ 平面,平面,··· 3分
∴ 平面.··································· 4分
(作法不唯一)
(Ⅱ)由三視圖可知,平面,,四邊形為直角梯形.
過點作于,則,.
∴ ,,
∴ ,故.······························································· 6分
∵ 平面,平面,
∴ .···································································································· 7分
∵ ,
∴ 平面.······················································································· 8分
(Ⅲ)∵ 為正三角形,
∴ .
在中,.
∴ ,··································· 10分
(其中為三棱錐的高).
························································································································ 11分
∵ ,
∴ . 12分
科目:高中數(shù)學 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產(chǎn)業(yè)建設工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設.求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調查和預測,A產(chǎn)品的利潤與投資成正比,其關系如圖1,B產(chǎn)品的利潤與投資的算術平方根成正比,其關系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com