設(shè)隨機(jī)變量ξ服從正態(tài)分布N(0,1),則下列結(jié)論正確的是( 。
①P(|ξ|<a)=P(ξ<a)+P(ξ>-a)(a>0);
②P(|ξ|<a)=2P(ξ<a)-1(a>0);
③P(|ξ|<a)=1-2P(ξ<a)(a>0);
④P(|ξ|<a)=1-P(|ξ|>a)(a>0).
分析:隨機(jī)變量ξ服從正態(tài)分布N(0,1),曲線關(guān)于x=0對(duì)稱,根據(jù)概率和正態(tài)曲線的性質(zhì),可得到結(jié)論.
解答:解:∵P(|ξ|<a)=P(-a<ξ<a),∴①不正確;
∵P(|ξ|<a)=P(-a<ξ<a)=P(ξ<a)-P(ξ<-a)=P(ξ<a)-P(ξ>a)=P(ξ<a)-(1-P(ξ<a))=2P(ξ<a)-1,∴②正確,③不正確;
∵P(|ξ|<a)+P(|ξ|>a)=1,∴P(|ξ|<a)=1-P(|ξ|>a)(a>0),∴④正確
故選D.
點(diǎn)評(píng):本題考查正態(tài)分布曲線的特點(diǎn)及曲線所表示的意義,解題的關(guān)鍵是熟練應(yīng)用概率的性質(zhì)和正態(tài)曲線的特點(diǎn),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)隨機(jī)變量ξ服從正態(tài)分布N(0,1)Φ(x)=P(ξ<x,則下列結(jié)論不正確的是(  )
A、Φ(0)=
1
2
B、Φ(x)=1-Φ(-x)
C、p(|ξ|)<a=2Φ(a)-1(a>1)
D、p(|ξ|>a)=1-Φ(a)(a>0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)隨機(jī)變量ξ服從正態(tài)分布N(0,1),若P(ξ>1.3)=p,則P(-1.3<ξ<0)=( 。
A、
1
2
+p
B、1-p
C、1-2p
D、
1
2
-p

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中正確命題的個(gè)數(shù)是   ( 。
(1)cosα≠0是α≠2kπ+
π
2
(k∈Z)
的充分必要條件;
(2)若a>0,b>0,且
2
a
+
1
b
=1
,則ab≥4;
(3)若將一組樣本數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上同一個(gè)常數(shù)后,則樣本的方差不變;
(4)設(shè)隨機(jī)變量ξ服從正態(tài)分布N(0,1),若P(ξ>1)=p,則P(-1<ξ<0)=
1
2
-p

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)隨機(jī)變量服從正態(tài)分布N(0,1),記φ(x)=P(ξ<x),則下列結(jié)論正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)隨機(jī)變量ξ服從正態(tài)分布N(1,δ2),若P(ξ>-2)=0.7,則函數(shù)f(x)=x2+4x+ξ不存在零點(diǎn)的概率是( 。
A、0.7B、0.8C、0.3D、0.2

查看答案和解析>>

同步練習(xí)冊(cè)答案