【題目】如圖,在四棱錐中,平面 平面,,, .
(1)證明
(2)設(shè)點(diǎn)在線段上,且,若的面積為,求四棱錐的體積
【答案】(1)見解析;(2)
【解析】
(1)推導(dǎo)出BA⊥AD,BA⊥PD,AP⊥PD,從而PD⊥平面PAB,由此能證明PD⊥PB.
(2)設(shè)AD=2a,則AB=BC=AP=a,PDa,,得為等腰三角形,利用推得面積,進(jìn)而求出a=2,由此能求出四棱錐P﹣ABCD的體積.
(1) 平面平面 ,
平面,,
在中,,,
由正弦定理可得: ,,∴PD⊥PA,又PA∩AB=A,
∴ 平面,.
(2)取的中點(diǎn),連結(jié), ,設(shè)AD=2a,則AB=BC=AP=a,PDa,則,∴為等腰三角形,且底邊BC上的高為
,的面積為.
的面積為,解得:,
四梭錐的體積為 .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】作一個(gè)平面截正方體得到一個(gè)多邊形(包括三角形)截面,那么截面形狀可能是__________.(填上所有你認(rèn)為正確的選項(xiàng)的序號)
①正三角形;②正方形;③菱形;④非正方形的矩形;⑤正五邊形;⑥正六邊形
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校有教師400人,對他們進(jìn)行年齡狀況和學(xué)歷的調(diào)查,其結(jié)果如下:
學(xué)歷 | 35歲以下 | 35-55歲 | 55歲及以上 |
本科 | 60 | 40 | |
碩士 | 80 | 40 |
(1)若隨機(jī)抽取一人,年齡是35歲以下的概率為,求;
(2)在35-55歲年齡段的教師中,按學(xué)歷狀況用分層抽樣的方法,抽取一個(gè)樣本容量為5的樣本,然后在這5名教師中任選2人,求兩人中至多有1人的學(xué)歷為本科的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在區(qū)間內(nèi)隨機(jī)取兩個(gè)數(shù)分別記為,則使得函數(shù)有零點(diǎn)的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓()的離心率為,且經(jīng)過點(diǎn).
(1)求橢圓的方程;
(2)過點(diǎn)作直線與橢圓交于不同的兩點(diǎn),,試問在軸上是否存在定點(diǎn)使得直線與直線恰關(guān)于軸對稱?若存在,求出點(diǎn)的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)對某市工薪階層關(guān)于“樓市限購令”的態(tài)度進(jìn)行調(diào)查,隨機(jī)抽調(diào)了50人,他們月收入的頻數(shù)分布及對“樓市限購令”贊成人數(shù)如下表.
月收入(單位百元) | ||||||
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 4 | 8 | 12 | 5 | 2 | 1 |
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填下面2×2列聯(lián)表,并問是否有99%的把握認(rèn)為“月收入以5500元為分界點(diǎn)對“樓市限購令”的態(tài)度有差異;
月收入不低于55百元的人數(shù) | 月收入低于55百元的人數(shù) | 合計(jì) | |
贊成 | a=______________ | c=______________ | ______________ |
不贊成 | b=______________ | d=______________ | ______________ |
合計(jì) | ______________ | ______________ | ______________ |
(2)試求從年收入位于(單位:百元)的區(qū)間段的被調(diào)查者中隨機(jī)抽取2人,恰有1位是贊成者的概率。
參考公式:,其中.
參考值表:
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形中,,,為的中點(diǎn),是與的交點(diǎn),將沿翻折到圖中的位置,得到四棱錐.
(1)求證:;
(2)當(dāng),時(shí),求到平面的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com