是否存在銳角α和β,使得下列兩式①α+2β=,②tantanβ=2-同時成立?

解:假設(shè)存在符合題意的銳角α,β.

由①得+β=,

所以tan(+β)=.

由②知tantanβ=2-,所以tan+tanβ=3-,

所以tan,tanβ是方程x2-(3-)x+2-=0的兩個根,得x1=1,x2=2-.

因?yàn)?<α<,0<,0<tan<1,

所以tan≠1,tan=2-,tanβ=1.

又因?yàn)?<β<,所以將β=代入①得α=.

所以存在銳角α=,β=,使①②同時成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

是否存在銳角α,β,使得下列兩式:①α+2β=
3
;②tan
α
2
?tanβ=2-
3
同時成立?若存在,求出α和β;若不存在,說明理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)是否存在銳角α與β,使得(1)α+2β=
3
,(2)tan
α
2
•tanβ=2-
3
同時成立.
若存在,求出α和β的值;若不存在,說明理由.
(2)已知tanα,tanβ是方程x2-3x-3=0的兩根,求sin2(α+β)-3sin(α+β)cos(α+β)-3cos2(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

是否存在銳角,使得(1);(2)同時成立,若存在,求出、的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

是否存在銳角α和β,使得(1)α+2β=,(2)tantanβ=2-同時成立?若存在,則求出α、β的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年陜西省高三上學(xué)期第三次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

是否存在銳角,使得(1)同時成立?若存在,求出的值;若不存在,說明理由。

 

查看答案和解析>>

同步練習(xí)冊答案