【題目】已知點A(1,3)B(3,1),C(﹣1,0)求:
(1)求BC及BC邊上的中線所在直線的方程;
(2)求BC邊上的垂直平分線所在直線方程;
(3)求△ABC的面積.

【答案】
(1)解:如圖示:

B(3,1),C(﹣1,0),

∴直線BC的方程是: = ,

即x﹣4y+1=0,

BC的中點D(1, ),而A(1,3),

故BC邊上的中線所在的方程是:x=1;


(2)解:直線BC的斜率是 ,BC的垂線所在的方程斜率是:﹣4,

代入點斜式方程得:y﹣ =﹣4(x﹣1),

即:8x+2y﹣9=0


(3)解:AC= ,AB= ,BC=

∴cosC= =

∴sinC= = ,

∴SABC= × × × =5.


【解析】(1)根據(jù)兩點式求出BC的方程即可;求出BC的中點D,從而求出AD的方程;(2)根據(jù)點斜式求出方程即可;(3)先求出sinC,代入三角形面積公式求出三角形的面積即可.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐S﹣ABCD的底面為正方形,SD⊥底面ABCD,則下列結(jié)論中不正確的是(

A.AC⊥SB
B.AB∥平面SCD
C.SA與平面SBD所成的角等于SC與平面SBD所成的角
D.AB與SC所成的角等于DC與SA所成的角

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖 已知A(1,2)、B(﹣1,4)、C(5,2),
(1)求線段AB中點D坐標;
(2)求△ABC的邊AB上的中線所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={a2 , a+1,﹣3},B={a﹣3,a2+1,2a﹣1}若A∩B={﹣3},求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠有25周歲以上(含25周歲)工人300名,25周歲以下工人200名.為研究工人的日平均生產(chǎn)量是否與年齡有關.現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計了他們某月的日平均生產(chǎn)件數(shù),然后按工人年齡在“25周歲以上(含25周歲)”和“25周歲以下”分為兩組,再將兩組工人的日平均生產(chǎn)件數(shù)分成5組:[50,60),[60,70),[70,80),[80,90),[90,100)分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.

附表:

P(K2≥k)

0.100

0.010

0.001

k

2.706

6.635

10.828

K2= ,(其中n=a+b+c+d)
(1)從樣本中日平均生產(chǎn)件數(shù)不足60件的工人中隨機抽取2人,求至少抽到一名“25周歲以下組”工人的頻率.
(2)規(guī)定日平均生產(chǎn)件數(shù)不少于80件者為“生產(chǎn)能手”,請你根據(jù)已知條件完成2×2的列聯(lián)表,并判斷是否有90%的把握認為“生產(chǎn)能手與工人所在的年齡組有關”?

生產(chǎn)能手

非生產(chǎn)能手

合計

25周歲以上組

25周歲以下組

合計

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,A,B,C,D為空間四點.在△ABC中,AB=2,AC=BC= .等邊三角形ADB以AB為軸運動.

(1)當平面ADB⊥平面ABC時,求CD;
(2)當△ADB轉(zhuǎn)動時,是否總有AB⊥CD?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】利用隨機數(shù)表法對一個容量為500編號為000,001,002,…,499的產(chǎn)品進行抽樣檢驗,抽取一個容量為10的樣本,若選定從第12行第5列的數(shù)開始向右讀數(shù),(下面摘取了隨機數(shù)表中的第11行至第15行),根據(jù)下圖,讀出的第3個數(shù)是(
A.841
B.114
C.014
D.146

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,ABCD﹣A1B1C1D1為正方體,下面結(jié)論錯誤的是(

A.BD∥平面CB1D1
B.AC1⊥BD
C.異面直線AD與CB1角為60°
D.AC1⊥平面CB1D1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設a,b為兩條直線,α,β為兩個平面,下列四個命題中,正確的命題是(
A.若a,b與α所成的角相等,則α∥b
B.若a∥α,b∥β,α∥β,則a∥b
C.若aα,bβ,α∥b,則α∥β
D.若a⊥α,b⊥β,α⊥β,是a⊥b

查看答案和解析>>

同步練習冊答案