((本題滿分15分)
已知三個(gè)函數(shù)其中第二個(gè)函數(shù)和第三個(gè)函數(shù)中的為同一個(gè)常數(shù),且,它們各自的最小值恰好是方程的三個(gè)根.
(Ⅰ) 求證:;
(Ⅱ) 設(shè)是函數(shù)的兩個(gè)極值點(diǎn),求的取值范圍.

解: (Ⅰ)三個(gè)函數(shù)的最小值依次為,由,得,(2分)
,…(4分)
故方程的兩根是
,………(6分)
.                            …………………(7分)
(Ⅱ) 依題意是方程的兩個(gè)根, …………(8分)
故有. ……(9分)
,      ……………………… (10分)


.              ……………………………(13分)
由(1)知,,

的取值范圍.    ………………(15分)

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)f(x)=ax2+bx+c,(a<0)不等式f(x)>-2x的解集為(1,3).
(1)若方程f(x)+6a=0有兩個(gè)相等的實(shí)根,求f(x)的解析式;
(2)若f(x)的最大值為正數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(Ⅰ)若函數(shù)處取得極小值是,求的值;  
(Ⅱ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅲ)若函數(shù)上有且只有一個(gè)極值點(diǎn), 求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知△ABC的周長為,且
(1)求邊AB的長;
(2)若△ABC的面積為,求角C的度數(shù)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù)的定義域?yàn)?0,1](為實(shí)數(shù)).
⑴當(dāng)時(shí),求函數(shù)的值域;
⑵若函數(shù)在定義域上是減函數(shù),求的取值范圍;
⑶求函數(shù)在x∈(0,1]上的最大值及最小值,并求出函數(shù)取最值時(shí)的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

.(本小題滿分12分)
已知函數(shù)f(x)=ax2+a2x+2b-a3,當(dāng)x∈(-2,6)時(shí),f(x)>0,
當(dāng)x∈(-∞,-2)∪(6,+∞)時(shí),f(x)<0,
(1)求f(x)的解析式.
(2)求f(x)在區(qū)間[1,10]上的最值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(14分)函數(shù)是定義在(-1,1)上的奇函數(shù),且
(1)求函數(shù)的解析式;
(2)利用定義證明在(-1,1)上是增函數(shù);
(3)求滿足的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(滿分16分)
某醫(yī)藥研究所開發(fā)一種新藥,據(jù)檢測,如果成人按規(guī)定的劑量服用,服藥后每毫升血液中的含藥量為(微克)與服藥后的時(shí)間(小時(shí))之間近似滿足如圖所示的曲線,其中OA 是線段,曲線 ABC 是函數(shù))的圖象,且是常數(shù).

(1)寫出服藥后y與x的函數(shù)關(guān)系式;
(2)據(jù)測定:每毫升血液中含藥量不少于2 微克時(shí)治療疾病有效.若某病人第一次服藥時(shí)間為早上 6 : 00 ,為了保持療效,第二次服藥最遲應(yīng)該在當(dāng)天的幾點(diǎn)鐘?
(3)若按(2)中的最遲時(shí)間服用第二次藥,則第二次服藥3個(gè)小時(shí)后,該病人每毫升血液中含藥量為多少微克。(結(jié)果用根號(hào)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知關(guān)于x的二次方程
(1)若方程有兩根,其中一根在區(qū)間內(nèi),另一根在區(qū)間內(nèi),求m的取值范圍
(2)若方程兩根均在區(qū)間內(nèi),求m的取值范圍       

查看答案和解析>>

同步練習(xí)冊(cè)答案