【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知 =
(1)求角C的大小,
(2)若c=2,求使△ABC面積最大時(shí)a,b的值.

【答案】
(1)解:∵A+C=π﹣B,即cos(A+C)=﹣cosB,

∴由正弦定理化簡(jiǎn)已知等式得: =

整理得:2sinAcosC+sinBcosC=﹣sinCcosB,即﹣2sinAcosC=sinBcosC+cosBsinC=sin(B+C)=sinA,

∵sinA≠0,

∴cosC=﹣

∵C為三角形內(nèi)角,

∴C=


(2)解:∵c=2,cosC=﹣ ,

∴由余弦定理得:c2=a2+b2﹣2abcosC,即4=a2+b2+ab≥2ab+ab=3ab,

∴ab≤ ,(當(dāng)且僅當(dāng)a=b時(shí)成立),

∵S= absinC= ab≤

∴當(dāng)a=b時(shí),△ABC面積最大為 ,此時(shí)a=b= ,

則當(dāng)a=b= 時(shí),△ABC的面積最大為


【解析】(1)已知等式左邊利用正弦定理化簡(jiǎn),右邊利用誘導(dǎo)公式變形,整理后再利用兩角和與差的正弦函數(shù)公式及誘導(dǎo)公式變形,根據(jù)sinA不為0求出cosC的值,即可確定出C的度數(shù);(2)利用余弦定理列出關(guān)系式,將c與cosC的值代入并利用基本不等式求出ab的最大值,進(jìn)而確定出三角形ABC面積的最大值,以及此時(shí)a與b的值即可.
【考點(diǎn)精析】掌握正弦定理的定義和余弦定理的定義是解答本題的根本,需要知道正弦定理:;余弦定理:;;

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)若函數(shù)的圖象恰好相切與點(diǎn),求實(shí)數(shù) 的值;

(2)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍;

(3)求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)正項(xiàng)數(shù)列{an}的前n項(xiàng)和Sn , 且滿足2Sn=an2+an
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列bn= + ,數(shù)列{bn}的前n項(xiàng)和為Tn , 求證:Tn<2n+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是棱形, , 平面, ,點(diǎn)、分別為中點(diǎn),連接 .

(1)求證:直線平面;

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 的焦點(diǎn)為,圓 .直線與拋物線交于點(diǎn)、兩點(diǎn),與圓切于點(diǎn).

(1)當(dāng)切點(diǎn)的坐標(biāo)為時(shí),求直線及圓的方程;

(2)當(dāng)時(shí),證明: 是定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)滿足f(x+y)=f(x)f(y),且f(1)=
(1)當(dāng)n∈N*時(shí),求f(n)的表達(dá)式;
(2)設(shè)an=nf(n),n∈N* , 求證a1+a2+a3+…+an<2;
(3)設(shè)bn=(9﹣n) ,n∈N* , Sn為bn的前n項(xiàng)和,當(dāng)Sn最大時(shí),求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(ω>0,0<φ< )的部分圖象如圖.

(1)求f(x)的解析式;
(2)將函數(shù)y=f(x)的圖象上所有點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)縮短為原來的 倍,再將所得函數(shù)圖象向右平移 個(gè)單位,得到函數(shù)y=g(x)的圖象,求g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是圓O的直徑,PA⊥圓O所在的平面,C是圓O上的點(diǎn).

(1)求證:BC⊥平面PAC;
(2)若Q為PA的中點(diǎn),G為△AOC的重心,求證:QG∥平面PBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家之一,城市缺水問題較為突出.某市為了節(jié)約生活用水,計(jì)劃在本市試行居民生活用水定額管理(即確定一個(gè)居民月均用水量標(biāo)準(zhǔn)用水量不超過a的部分按照平價(jià)收費(fèi),超過a的部分按照議價(jià)收費(fèi)).為了較為合理地確定出這個(gè)標(biāo)準(zhǔn),通過抽樣獲得了 100位居民某年的月均用水量(單位:t),制作了頻率分布直方圖.

(1)由于某種原因頻率分布直方圖部分?jǐn)?shù)據(jù)丟失,請(qǐng)?jiān)趫D中將其補(bǔ)充完整;
(2)用樣本估計(jì)總體,如果希望80%的居民每月的用水量不超出標(biāo)準(zhǔn)則月均用水量的最低標(biāo)準(zhǔn)定為多少噸,請(qǐng)說明理由;
(3)從頻率分布直方圖中估計(jì)該100位居民月均用水量的眾數(shù),中位數(shù),平均數(shù)(同一組中的數(shù)據(jù)用該區(qū)間的中點(diǎn)值代表).

查看答案和解析>>

同步練習(xí)冊(cè)答案