【題目】已知函數(shù)f(x)=log2(x+2)與g(x)=(x﹣a)2+1,若對(duì)任意的x1∈[2,6),都存在x2∈[0,2],使得f(x1)=g(x2),則實(shí)數(shù)a的取值范圍是 .
【答案】[﹣1,2﹣ ]∪[ ,3]
【解析】解:∵x1∈[2,6),∴f(2)≤f(x1)<f(6),即2≤f(x1)<3,∴f(x1)的值域?yàn)閇2,3).
g(x)的圖象開口向上,對(duì)稱軸為x=a,
1)若a≤0,則g(x)在[0,2]上是增函數(shù),∴g(0)≤g(x2)≤g(2),即g(x2)的值域?yàn)閇a2+1,a2﹣4a+5],
∴ ,解得﹣1≤a≤0.
2)若a≥2,則g(x)在[0,2]上是減函數(shù),∴g(2)≤g(x2)≤g(1),即g(x2)的值域?yàn)閇a2﹣4a+5,a2+1],
∴ ,解得2≤a≤3.
3)若0<a≤1,則gmin(x)=g(a)=1,gmax(x)=g(2)=a2﹣4a+5,∴g(x)的值域?yàn)閇1,a2﹣4a+5],
∴ ,解得0 .
4)若1<a<2,則gmin(x)=g(a)=1,gmax(x)=g(0)=a2+1,∴g(x)的值域?yàn)閇1,a2+1],
∴ ,解得 a<2.
綜上,a的取值范圍是[﹣1,0]∪[2,3]∪(0,2﹣ )∪( ,2)=[﹣1,2﹣ ]∪[ ,3].
所以答案是[﹣1,2﹣ ]∪[ ,3].
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班20名同學(xué)某次數(shù)學(xué)測(cè)試的成績(jī)可繪制成如圖莖葉圖.由于其中部分?jǐn)?shù)據(jù)缺失,故打算根據(jù)莖葉圖中的數(shù)據(jù)估計(jì)全班同學(xué)的平均成績(jī).
(1)完成頻率分布直方圖;
(2)根據(jù)(1)中的頻率分布直方圖估計(jì)全班同學(xué)的平均成績(jī)(同一組中的數(shù)據(jù)用改組區(qū)間的中點(diǎn)值作代表);
(3)根據(jù)莖葉圖計(jì)算出的全班的平均成績(jī)?yōu)?/span>,并假設(shè),且取得每一個(gè)可能值的機(jī)會(huì)相等,在(2)的條件下,求概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=x2+ax+b,a,b∈R.
(1)若a+b=3,當(dāng)x∈[1,2]時(shí),f(x)≥0恒成立,求實(shí)數(shù)a的取值范圍;
(2)是否存在實(shí)數(shù)對(duì)(a,b),使得不等式|f(x)|>2在區(qū)間[1,5]上無(wú)解,若存在,試求出所有滿足條件的實(shí)數(shù)對(duì)(a,b);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),在上恒成立,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),若函數(shù)在上恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩矩形ABCD與ADEF所在的平面互相垂直,AB=1,若將△DEF沿直線FD翻折,使得點(diǎn)E落在邊BC上(即點(diǎn)P),則當(dāng)AD取最小值時(shí),邊AF的長(zhǎng)是;此時(shí)四面體F﹣ADP的外接球的半徑是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)E,F(xiàn),G,H分別為空間四邊形ABCD中AB,BC,CD,AD的中點(diǎn),若AC=BD,且AC與BD成90°,則四邊形EFGH是( )
A.菱形
B.梯形
C.正方形
D.空間四邊形
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在棱長(zhǎng)為a的正方體ABCD﹣A1B1C1D1中,E,F(xiàn),P,Q分別是BC,C1D1 , AD1 , BD的中點(diǎn).
(1)求證:PQ∥平面DCC1D1;
(2)求PQ的長(zhǎng);
(3)求證:EF∥平面BB1D1D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sin +e﹣|x﹣1| , 有下列四個(gè)結(jié)論:
①圖象關(guān)于直線x=1對(duì)稱;
②f(x)的最大值是2;
③f(x)的最大值是﹣1,;
④f(x)在區(qū)間[﹣2015,2015]上有2015個(gè)零點(diǎn).
其中正確的結(jié)論是(寫出所有正確的結(jié)論序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為4的菱形中, ,點(diǎn)、分別在邊、上.點(diǎn)與點(diǎn)、不重合, , ,沿將翻折到的位置,使平面平面.
(Ⅰ)求證: 平面;
(Ⅱ)記三棱錐的體積為,四棱錐的體積為,且,求此時(shí)線段的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com