A={1,2},則滿足A∪B ={1,2,3,4}的集合B的個數(shù)為,


  1. A.
    1
  2. B.
    3
  3. C.
    4
  4. D.
    8
C
解析:
解:由A={1,2},則滿足A∪B ={1,2,3,4},說明集合B的元素至少含有3,4兩個元素,最多是4個元素,而這樣的集合,兩元素的集合為1個,三個元素的集合為2個,四個元素的集合為1個,共有4個。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若平面向
a
=(x,y),
b
=(x2y2)
,
c
=(2,2),
d
=(1,1)
則滿
a
c
=
b
d
=1
的向量
a
共有
 
個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)甲乙兩人進行圍棋比賽,約定每局勝者得1分,負(fù)者得0分(無平局),比賽進行到有一人比對方多2分或打滿6局時停止.設(shè)甲在每局中獲勝的概率為p(p>
1
2
)
,且各局勝負(fù)相互獨立.已知第二局比賽結(jié)束時比賽停止的概率為
5
9

(Ⅰ)若右圖為統(tǒng)計這次比賽的局?jǐn)?shù)n和甲、乙的總得分?jǐn)?shù)S、T的程序框圖.其中如果甲獲勝,輸入a=1,b=0;如果乙獲勝,則輸入a=0,b=1.請問在第一、第二兩個判斷框中應(yīng)分別填寫什么條件?
(Ⅱ)求p的值;
(Ⅲ)設(shè)ξ表示比賽停止時已比賽的局?jǐn)?shù),求隨機變量ξ的分布列和數(shù)學(xué)期望Eξ.
注:“n=0”,即為“n←0”或為“n:=0”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在第十六屆廣州亞運會上,某項目的比賽規(guī)則為:由兩人(記為甲和乙)進行比賽,每局勝者得1分,負(fù)者得0分(無平局),比賽進行到有一人比對方多2分或打滿6局時停止.設(shè)甲在每局中獲勝的概率為p(p>0.5),且各局勝負(fù)相互獨立.已知第二局比賽結(jié)束時比賽停止的概率為
59

(Ⅰ)求實數(shù)p的值;
(Ⅱ)如圖為統(tǒng)計比賽的局?jǐn)?shù)n和甲、乙的總得分?jǐn)?shù)S、T的程序框圖.其中如果甲獲勝,輸入a=1,b=0;如果乙獲勝,則輸入a=0,b=1.請問在第一、第二兩個判斷框中應(yīng)分別填寫什么條件;
(Ⅲ)設(shè)ζ表示比賽停止時已比賽的局?jǐn)?shù),求隨機變量ζ的分布列和數(shù)學(xué)期望Eζ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•遼寧一模)甲乙兩人進行乒乓球?qū)官,約定每局勝者得1分,負(fù)者得0分,比賽進行到有一個比對方多2分或打滿6局時停止.設(shè)甲在每局中獲勝的概率為P(P>
1
2
)
,且各局勝負(fù)相互獨立.已知第二局比賽結(jié)束時比賽停止的概率為
5
9
.若圖為統(tǒng)計這次比賽的局?jǐn)?shù)n和甲,乙的總得分?jǐn)?shù)S,T的程序框圖.其中如果甲獲勝則輸入a=1,b=0.如果乙獲勝,則輸入a=0,b=1.
(1)在圖中,第一,第二兩個判斷框應(yīng)分別填寫什么條件?
(2)求P的值.
(3)設(shè)ξ表示比賽停止時已比賽的局?jǐn)?shù),求隨機變量ξ的分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•許昌三模)甲乙兩人進行圍棋比賽,約定每局勝者得1分,負(fù)者得0分.比賽進行到有一人比對方多2分或打滿6局時停止,設(shè)甲在每局中獲勝的概率為p(p>
1
2
)
,且各局勝負(fù)相互獨立,已知第二局比賽結(jié)束時比賽停止的概率為
5
9
,若右圖為統(tǒng)計這次比賽的局?jǐn)?shù)和甲乙的總得分?jǐn)?shù)S,T的程序框圖,其中如果甲獲勝,輸入a=1,b=0;如果乙獲勝,則輸入a=0,b=1.
(I)求p的值;
(Ⅱ)設(shè)ξ表示比賽停止時已比賽的局?jǐn)?shù),求隨機變量ξ的分布列數(shù)學(xué)望Eξ.

查看答案和解析>>

同步練習(xí)冊答案