是函數(shù)的一個極值點.

       (1)求的關系式(用表示),并求的單調區(qū)間;

       (2)設,.若存在使得成立,求的取值范圍.

解:(Ⅰ)f `x=-[x2+(a-2)xba ]e3x,

f `3=0,得 -[32+(a-2)3+ba ]e33=0,即得b=-3-2a,---------------2分

f `x=[x2+(a-2)x-3-2aa ]e3x

=-[x2+(a-2)x-33a ]e3x=-(x3)(xa+1)e3x

f `x=0,得x1=3或x2=-a-1,由于x=3是極值點,

所以那么a≠-4.

a<-4時,x2>3=x1,則

在區(qū)間(-∞,3)上,f `x<0, f x為減函數(shù);

在區(qū)間(3,―a―1)上,f `x>0,f x為增函數(shù);

在區(qū)間(―a―1,+∞)上,f `x<0,f x為減函數(shù).-----------------------4分

a>-4時,x2<3=x1,則

在區(qū)間(-∞,―a―1)上,f `x<0, f x為減函數(shù);

在區(qū)間(―a―1,3)上,f `x>0,f x為增函數(shù);

在區(qū)間(3,+∞)上,f `x<0,f x為減函數(shù).-------------------------------6分

(Ⅱ)由(Ⅰ)知,當a>0時,f x在區(qū)間(0,3)上的單調遞增,在區(qū)間(3,4)上單調遞減,那么f x在區(qū)間[0,4]上的值域是[min{f (0),f (4) },f (3)],

f 0=-(2a+3)e3<0f 4=(2a+13)e1>0,f 3a+6,

那么f x在區(qū)間[0,4]上的值域是[-(2a+3)e3,a+6].--------------------8分

在區(qū)間[0,4]上是增函數(shù),

且它在區(qū)間[0,4]上的值域是[a2,(a2e4],-----------------10分

由于(a2)-(a+6)=a2a=(2≥0,所以只須僅須

a2)-(a+6)<1且a>0,解得0<a<

a的取值范圍是(0,).-----------------------------------------------12分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(09年萊西一中模擬理)(12分)

是函數(shù)的一個極值點.

   (Ⅰ)求的關系式(用表示),并求的單調區(qū)間;

   (Ⅱ)設,使得成立?若存在,求的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分14分)設是函數(shù)的一個極值點。

⑴求的關系式并求的單調區(qū)間;

       ⑵設,若存在使得成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:2011屆甘肅省蘭州一中高三第三次模擬考試理科數(shù)學 題型:解答題

(本小題滿分12分)
是函數(shù)的一個極值點.
(1)求的關系式(用表示),并求的單調區(qū)間;
(2)設,若存在,使得 成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江西南昌10所省高三第二次模擬沖刺理科數(shù)學試卷(七)(解析版) 題型:解答題

是函數(shù)的一個極值點。

(1)求的關系式(用表示),并求的單調區(qū)間;

(2)設,若存在,使得成立,求實數(shù)的取值范圍。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年甘肅省高三第三次模擬考試理科數(shù)學 題型:解答題

(本小題滿分12分)

是函數(shù)的一個極值點.

   (1)求的關系式(用表示),并求的單調區(qū)間;

 (2)設,若存在,使得 成立,求的取值范圍.

 

查看答案和解析>>

同步練習冊答案