【題目】已知焦點(diǎn)在x軸上且長(zhǎng)軸長(zhǎng)為4的橢圓C過點(diǎn)T1,1),記l為圓Ox2+y2=1的切線

1)求橢圓C的方程;

2)若l與橢圓C交于A、B兩點(diǎn),求證:∠AOB為定值.

【答案】1=1.(2)見解析.

【解析】

1)利用長(zhǎng)軸長(zhǎng)和橢圓上的點(diǎn),構(gòu)造方程求解出橢圓方程;(2)當(dāng)直線斜率不存在時(shí),求得坐標(biāo),可求得;當(dāng)直線斜率存在時(shí),將直線方程與橢圓方程聯(lián)立,利用韋達(dá)定理表示出,整理化簡(jiǎn)可得,可得;從而可知為定值.

1焦點(diǎn)在軸上且長(zhǎng)軸長(zhǎng)為的橢圓過點(diǎn)

設(shè)橢圓方程為

,解得,

橢圓的方程為

2)證明:為圓的切線

當(dāng)的斜率不存在時(shí),的方程為

與橢圓交于兩點(diǎn)

,,

,,

當(dāng)直線存在斜率時(shí),設(shè)的方程為:

,即

聯(lián)立,得

由題意,設(shè),

,

綜上可知,為定值

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知三棱錐的三條側(cè)棱, , 兩兩垂直, 為等邊三角形, 內(nèi)部一點(diǎn),點(diǎn)的延長(zhǎng)線上,且

Ⅰ)證明: ;

Ⅱ)證明: ;

,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若數(shù)列共有k項(xiàng),且同時(shí)滿足,,則稱數(shù)列數(shù)列.

1)若等比數(shù)列數(shù)列,求的值;

2)已知為給定的正整數(shù),且,

①若公差為的等差數(shù)列數(shù)列,求公差d

②若數(shù)列的通項(xiàng)公式為,其中常數(shù),判斷數(shù)列是否為數(shù)列,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】治理大氣污染刻不容緩,根據(jù)我國(guó)分布的《環(huán)境空氣質(zhì)量數(shù)(AQI)技術(shù)規(guī)定》:空氣質(zhì)量指數(shù)劃分階為0~50、51~100、101~150、151~200、201~300和大于300六級(jí),對(duì)應(yīng)于空氣質(zhì)量指數(shù)的六個(gè)級(jí)別,指數(shù)越大,級(jí)別越高,說明污染越嚴(yán)重,對(duì)人體健康的影響也越明顯.專家建議:當(dāng)空氣質(zhì)量指數(shù)小于時(shí),可以戶外運(yùn)動(dòng);空氣質(zhì)量指數(shù)及以上,不適合進(jìn)行旅游等戶外活動(dòng),以下是某市月中旬的空氣質(zhì)量指數(shù)情況:

時(shí)間

11日

12日

13日

14日

15日

16日

17日

18日

19日

20日

AQI

149

143

251

254

138

55

69

102

243

269

(1)求月中旬市民不適合進(jìn)行戶外活動(dòng)的概率;

(2)一外地游客在月中旬來該市旅游,想連續(xù)游玩兩天,求適合旅游的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直線過點(diǎn),且傾斜角為,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為

(1)求圓的直角坐標(biāo)方程及直線的參數(shù)方程;

(2)設(shè)直線與圓的兩個(gè)交點(diǎn)分別為, ,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三角形三邊長(zhǎng)是三個(gè)連續(xù)自然數(shù).

1)且三角形為鈍角三角形,求三邊長(zhǎng);

2)且最大角是最小角的倍,求三邊長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)的環(huán)保社團(tuán)參照國(guó)家環(huán)境標(biāo)準(zhǔn)制定了該校所在區(qū)域空氣質(zhì)量指數(shù)與空氣質(zhì)量等級(jí)對(duì)應(yīng)關(guān)系如下表(假設(shè)該區(qū)域空氣質(zhì)量指數(shù)不會(huì)超過300):

空氣質(zhì)量指數(shù)

空氣質(zhì)量等級(jí)

1級(jí)優(yōu)

2級(jí)良

3級(jí)輕度污染

4級(jí)中度污染

5級(jí)重度污染

6級(jí)嚴(yán)重污染

該社團(tuán)將該校區(qū)在2018年11月中10天的空氣質(zhì)量指數(shù)監(jiān)測(cè)數(shù)據(jù)作為樣本,繪制的頻率分布直方圖如下圖,把該直方圖所得頻率估計(jì)為概率.

(Ⅰ)以這10天的空氣質(zhì)量指數(shù)監(jiān)測(cè)數(shù)據(jù)作為估計(jì)2018年11月的空氣質(zhì)量情況,則2018年11月中有多少天的空氣質(zhì)量達(dá)到優(yōu)良?

(Ⅱ)已知空氣質(zhì)量等級(jí)為1級(jí)時(shí)不需要凈化空氣,空氣質(zhì)量等級(jí)為2級(jí)時(shí)每天需凈化空氣的費(fèi)用為1000元,空氣質(zhì)量等量等級(jí)為3級(jí)時(shí)每天需凈化空氣的費(fèi)用為2000元.若從這10天樣本中空氣質(zhì)量為1級(jí)、2級(jí)、3級(jí)的天數(shù)中任意抽取兩天,求這兩天的凈化空氣總費(fèi)用為3000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

)討論的單調(diào)性;

)若有兩個(gè)零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若S9=81,a3+a5=14

1)求數(shù)列{an}的通項(xiàng)公式;

2)設(shè)bn=,若{bn}的前n項(xiàng)和為Tn,證明:Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案