【題目】Monte-Carlo方法在解決數(shù)學問題中有廣泛的應用.下面利用Monte-Carlo方法來估算定積分.考慮到等于由曲線,軸,直線所圍成的區(qū)域的面積,如圖,在外作一個邊長為1正方形OABC.在正方形OABC內(nèi)隨機投擲n個點,若n個點中有m個點落入M中,則M的面積的估計值為,此即為定積分的估計值.現(xiàn)向正方形OABC中隨機投擲10000個點,以X表示落入M中的點的數(shù)目.

(1)求X的期望和方差;

(2)求用以上方法估算定積分時,的估計值與實際值之差在區(qū)間(-0.01,0.01)的概率.

附表:

1899

1900

1901

2099

2100

2101

0.0058

0.0062

0.0067

0.9933

0.9938

0.9942

【答案】(1);(2)0.9871.

【解析】

1)利用定積分求出曲邊梯形的面積得到每個點落入的概率,再利用二項分布求出隨機變量的期望和方差.

2)所求概率為,利用表中數(shù)據(jù)可得結(jié)果.

(1)依題意,每個點落入中的概率為,,

所以.

(2)依題意,所求概率為

.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】下列命題正確的是

(1)命題“”的否定是“,”;

(2)l為直線,,為兩個不同的平面,若,,則;

(3)給定命題p,q,若“為真命題”,則是假命題;

(4)“”是“”的充分不必要條件.

A. (1)(4)B. (2)(3)C. (3)(4)D. (1)(3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】小明家的晚報在下午任何一個時間隨機地被送到,他們一家人在下午任何一個時間隨機地開始晚餐.為了計算晚報在晚餐開始之前被送到的概率,某小組借助隨機數(shù)表的模擬方法來計算概率,他們的具體做法是將每個1分鐘的時間段看作個體進行編號,編號為01,編號為02,依此類推,編號為90.在隨機數(shù)表中每次選取一個四位數(shù),前兩位表示晚報時間,后兩位表示晚餐時間,如果讀取的四位數(shù)表示的晚報晚餐時間有一個不符合實際意義,視為這次讀取的無效數(shù)據(jù)(例如下表中的第一個四位數(shù)7840中的78不符合晚報時間).按照從左向右,讀完第一行,再從左向右讀第二行的順序,讀完下表,用頻率估計晚報在晚餐開始之前被送到的概率為  

7840 1160 5054 3139 8082 7732 5034 3682 4829 4052

4201 6277 5678 5188 6854 0200 8650 7584 0136 7655

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】新鮮的荔枝很好吃,但摘下后容易變黑,影響賣相.某大型超市進行扶貧工作,按計劃每年六月從精準扶貧戶中訂購荔枝,每天進貨量相同且每公斤20元,售價為每公斤24元,未售完的荔枝降價處理,以每公斤16元的價格當天全部處理完.根據(jù)往年情況,每天需求量與當天平均氣溫有關(guān).如果平均氣溫不低于25攝氏度,需求量為公斤;如果平均氣溫位于攝氏度,需求量為公斤;如果平均氣溫位于攝氏度,需求量為公斤;如果平均氣溫低于15攝氏度,需求量為公斤.為了確定6月1日到30日的訂購數(shù)量,統(tǒng)計了前三年6月1日到30日各天的平均氣溫數(shù)據(jù),得到如圖所示的頻數(shù)分布表:

平均氣溫

天數(shù)

2

16

36

25

7

4

(Ⅰ)假設(shè)該商場在這90天內(nèi)每天進貨100公斤,求這90天荔枝每天為該商場帶來的平均利潤(結(jié)果取整數(shù));

(Ⅱ)若該商場每天進貨量為200公斤,以這90天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當天該商場不虧損的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此進行了10次試驗.測得的數(shù)據(jù)如下:

零件數(shù)x(個)

10

20

30

40

50

60

70

80

90

100

加工時間y(分)

62

68

75

81

89

95

102

108

115

122

1yx是否具有線性相關(guān)關(guān)系?

2)如果yx具有線性相關(guān)關(guān)系,求回歸直線方程;

3)根據(jù)求出的回歸直線方程,預測加工200個零件所用的時間為多少?

:對于一組數(shù)據(jù)(x1,y1),(x2,y2),…,(xn,yn),其回歸直線=x+的斜率和截距的最小二乘估計分別為=,=-.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其中.

(1)討論的單調(diào)性;

(2)當時,證明:;

(3)求證:對任意的,都有:,(其中為自然對數(shù)的底數(shù))。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為選拔選手參加“中國詩詞大會”,某中學舉行一次“詩詞大賽”活動.為了了解本次競賽學生的成績情況,從中抽取了部分學生的分數(shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為)進行統(tǒng)計.按照 , , 的分組作出頻率分布直方圖,并作出樣本分數(shù)的莖葉圖(圖中僅列出了得分在, 的數(shù)據(jù)).

(1)求樣本容量和頻率分布直方圖中、的值;

(2)在選取的樣本中,從競賽成績在80分以上(含80分)的學生中隨機抽取2名學生參加“中國謎語大會”,設(shè)隨機變量表示所抽取的2名學生中得分在內(nèi)的學生人數(shù),求隨機變量的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】全國大學生機器人大賽是由共青團中央,全國學聯(lián),深圳市人民政府聯(lián)合主辦的賽事,是中國最具影響力的機器人項目,是全球獨創(chuàng)的機器人競技平臺.全國大學生機器人大賽比拼的是參賽選手們的能力,堅持和態(tài)度,展現(xiàn)的是個人實力以及整個團隊的力量.2015賽季共吸引全國240余支機器人戰(zhàn)隊踴躍報名,這些參賽戰(zhàn)隊來自全國六大賽區(qū),150余所高等院校,其中不乏北京大學,清華大學,上海交大,中國科大,西安交大等眾多國內(nèi)頂尖高校,經(jīng)過嚴格篩選,最終由111支機器人戰(zhàn)隊參與到2015年全國大學生機器人大賽的激烈角逐之中,某大學共有“機器人”興趣團隊1000個,大一、大二、大三、大四分別有100,200,300,400個,為挑選優(yōu)秀團隊,現(xiàn)用分層抽樣的方法,從以上團隊中抽取20個團隊.

(1)應從大三抽取多少個團隊?

(2)將20個團隊分為甲、乙兩組,每組10個團隊,進行理論和實踐操作考試(共150分),甲、乙兩組的分數(shù)如下:

甲:125,141,140,137,122,114,119,139,121,142

乙:127,116,144,127,144,116,140,140,116,140

從甲、乙兩組中選一組強化訓練,備戰(zhàn)機器人大賽.

(i)從統(tǒng)計學數(shù)據(jù)看,若選擇甲組,理由是什么?若選擇乙組,理由是什么?

(ii)從乙組中不低于140分的團隊中任取兩個團隊,求至少有一個團隊為144分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某少數(shù)民族的刺繡有著悠久的歷史,如圖4①,②,③,④為她們刺繡最簡單的四個圖案,這些圖案都是由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第n個圖形包含f(n)個小正方形.

(1)求出f(5)的值;

(2)利用合情推理的“歸納推理思想”,歸納出f(n+1)與f(n)之間的關(guān)系式,并根據(jù)你得到的關(guān)系式求出f(n)的表達式;

(3)求的值.

查看答案和解析>>

同步練習冊答案