已知等差數(shù)列的公差大于0,是方程的兩根.
(1)求數(shù)列的通項公式;
(2)設(shè),求數(shù)列的前項和.
科目:高中數(shù)學 來源: 題型:解答題
已知各項均為正數(shù)的數(shù)列的前項和為,且對任意的,都有。
(1)求數(shù)列的通項公式;
(2)若數(shù)列滿足,且cn=anbn,求數(shù)列的前 項和;
(3)在(2)的條件下,是否存在整數(shù),使得對任意的正整數(shù),都有,若存在,求出的值;若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
設(shè)等差數(shù)列{an}的首項a1為a,公差d=2,前n項和為Sn.
(1) 若當n=10時,Sn取到最小值,求的取值范圍;
(2) 證明:n∈N*, Sn,Sn+1,Sn+2不構(gòu)成等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知等比數(shù)列的各項均為正數(shù),且成等差數(shù)列,成等比數(shù)列.
(1)求數(shù)列的通項公式;
(2)已知,記,
,求證:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
在等差數(shù)列中,,.令,數(shù)列的前項和為.
(1)求數(shù)列的通項公式和;
(2)是否存在正整數(shù),(),使得,,成等比數(shù)列?若存在,求出所有
的,的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知數(shù)列是等差數(shù)列,是等比數(shù)列,其中,,且為、的等差中項,為、的等差中項.
(1)求數(shù)列與的通項公式;
(2)記,求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知公比不為的等比數(shù)列的首項,前項和為,且成等差數(shù)列.
(1)求等比數(shù)列的通項公式;
(2)對,在與之間插入個數(shù),使這個數(shù)成等差數(shù)列,記插入的這個數(shù)的和為,求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知是公差不等于0的等差數(shù)列,是等比數(shù)列,且.
(1)若,比較與的大小關(guān)系;
(2)若.(ⅰ)判斷是否為數(shù)列中的某一項,并請說明理由;
(ⅱ)若是數(shù)列中的某一項,寫出正整數(shù)的集合(不必說明理由).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com