已知函數(shù)f(x)在[-5,5]上是偶函數(shù),f(x)在[0,5]上是單調(diào)函數(shù),且f(-3)<f(-1),則下列不等式一定成立的是( )
A.f(-1)<f(3)
B.f(2)<f(3)
C.f(-3)<f(5)
D.f(0)>f(1)
【答案】分析:偶函數(shù)f(x)在[0,5]上是單調(diào)函數(shù),且f(-3)<f(-1),故可知函數(shù)f(x)在[0,5]上是單調(diào)減函數(shù),故易判斷.
解答:解:偶函數(shù),f(x)在[0,5]上是單調(diào)函數(shù),且f(-3)<f(-1),
可知函數(shù)f(x)在[0,5]上是單調(diào)減函數(shù),所以f(0)>f(1)
故選D.
點評:本題主要考查偶函數(shù)的性質(zhì),偶函數(shù)在其對稱區(qū)間上單調(diào)性相反,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

6、已知函數(shù)f(x)在R上是減函數(shù),A(0,-2),B(-3,2)是其圖象上的兩點,那么不等式-2<f(x)<2的解集是
{x|-3<x<0}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

11、已知函數(shù)f(x)在R上滿足f(x)=2f(2-x)-x2+8x-8,則曲線y=f(x)在點(1,f(1))處的切線方程是
y=2x-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)在R上滿足y=f(x)=2f(2-x)+ex-1+x2,則曲線y=f(x)在點(1,f(1))處的切線方程是( 。
A、2x-y-1=0B、x-y-3=0C、3x-y-2=0D、2x+y-3=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)在R上為增函數(shù),且滿足f(4)<f(2x),則x的取值范圍是
(2,+∞)
(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
x2
2
-(1+2a)x+
4a+1
2
ln(2x+1)
,a>0.
(Ⅰ)已知函數(shù)f(x)在x=2取得極小值,求a的值;
(Ⅱ)討論函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)當a>
1
4
時,若存在x0∈(
1
2
,+∞),使得f(x0)<
1
2
-2a2
,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案