【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知直線(其中為參數(shù), 為傾斜角).以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求的直角坐標(biāo)方程,并求的焦點(diǎn)的直角坐標(biāo);
(2)已知點(diǎn),若直線與相交于兩點(diǎn),且,求的面積.
【答案】(1)的直角坐標(biāo)方程為,其焦點(diǎn)為.(2)
【解析】試題分析:(1)根據(jù)代入原方程,寫(xiě)出直角坐標(biāo)方程以及焦點(diǎn)坐標(biāo)即可; (2)將直線l的參數(shù)方程代入曲線C中,寫(xiě)出韋達(dá)定理,再根據(jù)t的幾何意義將等價(jià)轉(zhuǎn)化,代入韋達(dá)定理解出直線的傾斜角的值,進(jìn)而求出三角形的面積.
試題解析:解:(1)原方程變形為,
∵,
∴的直角坐標(biāo)方程為,其焦點(diǎn)為.
(2)把的方程代入得,
則,①
,
即,
平方得,②
把①代入②得,∴,
∵是直線的傾斜角,∴,
∴的普通方程為,且,
∴的面積為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修44:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,圓C的參數(shù)方程為,(t為參數(shù)),在以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為,A,B兩點(diǎn)的極坐標(biāo)分別為.
(Ⅰ)求圓C的普通方程和直線的直角坐標(biāo)方程;
(Ⅱ)點(diǎn)P是圓C上任一點(diǎn),求△PAB面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),且曲線在處的切線與平行.
(1)求的值;
(2)當(dāng)時(shí),試探究函數(shù)的零點(diǎn)個(gè)數(shù),并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,且過(guò)點(diǎn).
(1)求的方程;
(2)是否存在直線與相交于兩點(diǎn),且滿足:①與(為坐標(biāo)原點(diǎn))的斜率之和為2;②直線與圓相切,若存在,求出的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C:(x﹣1)2+y2=9內(nèi)有一點(diǎn)P(2,2),過(guò)點(diǎn)P作直線l交圓C于A、B兩點(diǎn).
(1)當(dāng)l經(jīng)過(guò)圓心C時(shí),求直線l的方程; (寫(xiě)一般式)
(2)當(dāng)直線l的傾斜角為45°時(shí),求弦AB的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某印刷廠為了研究印刷單冊(cè)書(shū)籍的成本(單位:元)與印刷冊(cè)數(shù)(單位:千冊(cè))之間的關(guān)系,在印制某種書(shū)籍時(shí)進(jìn)行了統(tǒng)計(jì),相關(guān)數(shù)據(jù)見(jiàn)下表:
印刷冊(cè)數(shù)(千冊(cè)) | 2 | 3 | 4 | 5 | 8 |
單冊(cè)成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
根據(jù)以上數(shù)據(jù),技術(shù)人員分別借助甲、乙兩種不同的回歸模型,得到兩個(gè)回歸方程,方程甲: ,方程乙: .
(1)為了評(píng)價(jià)兩種模型的擬合效果,完成以下任務(wù).
①完成下表(計(jì)算結(jié)果精確到0.1);
印刷冊(cè)數(shù)(千冊(cè)) | 2 | 3 | 4 | 5 | 8 | |
單冊(cè)成本(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
模型甲 | 估計(jì)值 | 2.4 | 2.1 | 1.6 | ||
殘差 | 0 | -0.1 | 0.1 | |||
模型乙 | 估計(jì)值 | 2.3 | 2 | 1.9 | ||
殘差 | 0.1 | 0 | 0 |
②分別計(jì)算模型甲與模型乙的殘差平方和及,并通過(guò)比較, 的大小,判斷哪個(gè)模型擬合效果更好.
(2)該書(shū)上市之后,受到廣大讀者熱烈歡迎,不久便全部售罄,于是印刷廠決定進(jìn)行二次印刷.根據(jù)市場(chǎng)調(diào)查,新需求量為8千冊(cè)(概率0.8)或10千冊(cè)(概率0.2),若印刷廠以每?jī)?cè)5元的價(jià)格將書(shū)籍出售給訂貨商,問(wèn)印刷廠二次印刷8千冊(cè)還是10千冊(cè)能獲得更多利潤(rùn)?(按(1)中擬合效果較好的模型計(jì)算印刷單冊(cè)書(shū)的成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各組中的兩個(gè)函數(shù)是同一函數(shù)的為( )
(1)f(x)=1,g(x)=x0
(2)f(x)= ,g(x)=
(3)f(x)=lnxx , g(x)=elnx
(4)f(x)= ,g(x)= .
A.(1)
B.(2)
C.(3)
D.(4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)m,n是兩條不同的直線,α,β是兩個(gè)不重合的平面,給定下列四個(gè)命題,其中為真命題的是( ) ① ;② ;
③ ;④ .
A.①和②
B.②和③
C.③和④
D.①和④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)P是橢圓 上的一點(diǎn),F(xiàn)1和F2是焦點(diǎn),且 ,則△F1PF2的周長(zhǎng)為 , △F1PF2的面積為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com