【題目】定義:對(duì)于任意,滿足條件是與無(wú)關(guān)的常數(shù)的無(wú)窮數(shù)列稱為數(shù)列.

1)若,證明:數(shù)列數(shù)列;

2)設(shè)數(shù)列的通項(xiàng)為,且數(shù)列數(shù)列,求常數(shù)的取值范圍;

3)設(shè)數(shù)列,問(wèn)數(shù)列是否是數(shù)列?請(qǐng)說(shuō)明理由.

【答案】(1)見(jiàn)解析;(2);(3)當(dāng)時(shí)數(shù)列T數(shù)列;當(dāng)時(shí)數(shù)列不是T數(shù)列,見(jiàn)解析

【解析】

1)根據(jù),求出,根據(jù)題中條件,即可判斷出結(jié)果;

2)先作差得到,判斷其單調(diào)性,即可得出結(jié)果;

3)分,三種情況,根據(jù)數(shù)列需要滿足的條件,分別求解,即可得出結(jié)果.

1)由,得

,

所以數(shù)列滿足,又,當(dāng)時(shí),取得最大值,即

綜上,數(shù)列數(shù)列

2)因?yàn)?/span>,

所以當(dāng)時(shí),,此時(shí)數(shù)列單調(diào)遞增.

當(dāng)時(shí),,此時(shí)數(shù)列單調(diào)遞減;故數(shù)列的最大項(xiàng)是,

所以,的取值范圍是

3)①當(dāng)時(shí),當(dāng)時(shí),

,

即當(dāng)時(shí)符合條件,則,此時(shí)

于是

又對(duì)于,所以當(dāng)時(shí)數(shù)列數(shù)列;

②當(dāng)時(shí),取則:,

,所以時(shí)數(shù)列不是數(shù)列

③當(dāng)時(shí),

,

,所以時(shí)數(shù)列不是數(shù)列

綜上:當(dāng)時(shí)數(shù)列數(shù)列;當(dāng)時(shí)數(shù)列不是數(shù)列

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在邊長(zhǎng)為2的菱形中,,將菱形沿對(duì)角線對(duì)折,使二面角的余弦值為,則所得三棱錐的內(nèi)切球的表面積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,且

)求數(shù)列的通項(xiàng)公式;

)若數(shù)列滿足,求數(shù)列的通項(xiàng)公式;

)在()的條件下,設(shè),問(wèn)是否存在實(shí)數(shù)使得數(shù)列是單調(diào)遞增數(shù)列?若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三棱錐 中,底面 是邊長(zhǎng)為 2 的正三角形,頂點(diǎn) 在底面上的射影為的中心,若的中點(diǎn),且直線與底面所成角的正切值為,則三棱錐外接球的表面積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修;坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,已知某圓的極坐標(biāo)方程為:

)將極坐標(biāo)方程化為普通方程;

)若點(diǎn)P(x,y)在該圓上,求xy的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,其中為常數(shù).

1)證明: ;

2)是否存在,使得為等差數(shù)列?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司計(jì)劃在甲、乙兩個(gè)電視臺(tái)做總時(shí)間不超過(guò)300分鐘的廣告,廣告費(fèi)用不超過(guò)9萬(wàn)元,甲、乙電視臺(tái)的廣告費(fèi)標(biāo)準(zhǔn)分別是500/分鐘和200元分鐘,假設(shè)甲、乙兩個(gè)電視臺(tái)為該公司做的廣告能給公司帶來(lái)的收益分別為0.4萬(wàn)元/分鐘和0.2萬(wàn)元分鐘,那么該公司合理分配在甲、乙兩個(gè)電視臺(tái)的廣告時(shí)間,能使公司獲得最大的收益是()萬(wàn)元

A.72B.80C.84D.90

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】南充高中扎實(shí)推進(jìn)陽(yáng)光體育運(yùn)動(dòng),積極引導(dǎo)學(xué)生走向操場(chǎng),走進(jìn)大自然,參加體育鍛煉,每天上午第三節(jié)課后全校大課間活動(dòng)時(shí)長(zhǎng)35分鐘.現(xiàn)為了了解學(xué)生的體育鍛煉時(shí)間,采用簡(jiǎn)單隨機(jī)抽樣法抽取了100名學(xué)生,對(duì)其平均每日參加體育鍛煉的時(shí)間(單位:分鐘)進(jìn)行調(diào)查,按平均每日體育鍛煉時(shí)間分組統(tǒng)計(jì)如下表:

分組

男生人數(shù)

2

16

19

18

5

3

女生人數(shù)

3

20

10

2

1

1

若將平均每日參加體育鍛煉的時(shí)間不低于120分鐘的學(xué)生稱為鍛煉達(dá)人”.

1)將頻率視為概率,估計(jì)我校7000名學(xué)生中鍛煉達(dá)人有多少?

2)從這100名學(xué)生的鍛煉達(dá)人中按性別分層抽取5人參加某項(xiàng)體育活動(dòng).

①求男生和女生各抽取了多少人;

②若從這5人中隨機(jī)抽取2人作為組長(zhǎng)候選人,求抽取的2人中男生和女生各1人的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】十九世紀(jì)末:法國(guó)學(xué)者貝特朗在研究幾何概型時(shí)提出了“貝特朗悖論”,即“在一個(gè)圓內(nèi)任意選一條弦,這條弦的弦長(zhǎng)長(zhǎng)于這個(gè)圓的內(nèi)接等邊三角形邊長(zhǎng)的概率是多少?”貝特朗用“隨機(jī)半徑”“隨機(jī)端點(diǎn)”“隨機(jī)中點(diǎn)”三個(gè)合理的求解方法,但結(jié)果都不相同.該悖論的矛頭直擊概率概念本身,強(qiáng)烈地刺激了概率論基礎(chǔ)的嚴(yán)格化.已知“隨機(jī)端點(diǎn)”的方法如下:設(shè)為圓上一個(gè)定點(diǎn),在圓周上隨機(jī)取一點(diǎn),連接,所得弦長(zhǎng)大于圓的內(nèi)接等邊三角形邊長(zhǎng)的概率.則由“隨機(jī)端點(diǎn)”求法所求得的概率為( )

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案