【題目】已知函數(shù)f(x)=ax2+bx+1(a,b為實(shí)數(shù)),設(shè),
(1)若f(-1)=0,且對(duì)任意實(shí)數(shù)x均有f(x)≥0成立,求F(x)的表達(dá)式;
(2)在(1)的條件下,當(dāng)x∈[-2,2]時(shí),g(x)=f(x)-kx是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍;
(3)設(shè)mn<0,m+n>0,a>0,且f(x)滿足f(-x)=f(x),試比較F(m)+F(n)的值與0的大小.
【答案】(1).(2).(3) F(m)+F(n)>0.
【解析】
(1)由可得;然后再根據(jù)f(x)≥0恒成立并結(jié)合判別式可得a=1,進(jìn)而可得函數(shù)的解析式.(2)由題意可得,根據(jù)函數(shù)有單調(diào)性可得對(duì)稱軸與所給區(qū)間的關(guān)系,從而可得k的取值范圍.(3)結(jié)合題意可得函數(shù)為奇函數(shù)且在R上為增函數(shù),再根據(jù)條件mn<0,m+n>0可得F(m)+F(n)>0.
(1)∵,
∴b=a+1.
∵f(x)≥0對(duì)任意實(shí)數(shù)x恒成立,
∴,
解得a=1.
∴f(x)=x2+2x+1.
故.
(2)由(1)知f(x)=x2+2x+1,
∴g(x)=f(x)-kx=x2+(2-k)x+1.
由g(x)在區(qū)間[-2,2]上是單調(diào)函數(shù)可得或,
解得k≤-2或k≥6.
故k的取值范圍為.
(3)∵f(-x)=f(x),
∴f(x)為偶函數(shù),
∴b=0.
又a>0,
∴f(x)在區(qū)間[0,+∞)為增函數(shù).
對(duì)于F(x),當(dāng)x>0時(shí),;
當(dāng)x<0時(shí),,
∴,且F(x)在區(qū)間[0,+∞)上為增函數(shù),
∴在上為增函數(shù).
由mn<0,知m,n異號(hào),不妨設(shè)m>0,n<0,
則有m>-n>0,
∴,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)f(x),滿足當(dāng)x>0時(shí),f(x)>1,且對(duì)任意的x,y,有,f(1)=2,且.
(1)求f(0)的值;
(2)求證:對(duì)任意x,都有f(x)>0;
(3)解不等式f(32x)>4.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)h(x)滿足
①h(0)=1,h(1)=0;
②對(duì)任意a∈[0,1],有h(h(a))=a;
③在(0,1)上單調(diào)遞減.則稱h(x)為補(bǔ)函數(shù).已知函數(shù)h(x)= (λ>﹣1,p>0)
(1)判函數(shù)h(x)是否為補(bǔ)函數(shù),并證明你的結(jié)論;
(2)若存在m∈[0,1],使得h(m)=m,若m是函數(shù)h(x)的中介元,記p= (n∈N+)時(shí)h(x)的中介元為xn , 且Sn= ,若對(duì)任意的n∈N+ , 都有Sn< ,求λ的取值范圍;
(3)當(dāng)λ=0,x∈(0,1)時(shí),函數(shù)y=h(x)的圖象總在直線y=1﹣x的上方,求P的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,建立平面直角坐標(biāo)系xOy,x軸在地平面上,y軸垂直于地平面,單位長(zhǎng)度為1千米.某炮位于坐標(biāo)原點(diǎn).已知炮彈發(fā)射后的軌跡在方程y=kx﹣ (1+k2)x2(k>0)表示的曲線上,其中k與發(fā)射方向有關(guān).炮的射程是指炮彈落地點(diǎn)的橫坐標(biāo).
(1)求炮的最大射程;
(2)設(shè)在第一象限有一飛行物(忽略其大。,其飛行高度為3.2千米,試問它的橫坐標(biāo)a不超過多少時(shí),炮彈可以擊中它?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)某食品廠為了檢查一條自動(dòng)包裝流水線的生產(chǎn)情況,隨機(jī)抽取該流水線上件產(chǎn)品作為樣本稱出它們的重量(單位:克),重量的分組區(qū)間為,, ,,由此得到樣本的頻率分布直方圖,如圖所示.
(1)根據(jù)頻率分布直方圖,求重量超過克的產(chǎn)品數(shù)量;
(2)在上述抽取的件產(chǎn)品中任取件,設(shè)為重量超過克的產(chǎn)品數(shù)量,求的分布列;
(3)從該流水線上任取件產(chǎn)品,求恰有件產(chǎn)品的重量超過克的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國(guó)古代著名的數(shù)學(xué)著作有10部算書,被稱為“算經(jīng)十書”.某校數(shù)學(xué)興趣小組甲、乙、丙、丁四名同學(xué)對(duì)古代著名的數(shù)學(xué)著作產(chǎn)生濃厚的興趣.一天,他們根據(jù)最近對(duì)這十部書的閱讀本數(shù)情況說了這些話,甲:“乙比丁少”;乙:“甲比丙多”;丙:“我比丁多”; 丁:“丙比乙多”,他們說的這些話中,只有一個(gè)人說的是真實(shí)的,而這個(gè)人正是他們四個(gè)人中讀書本數(shù)最少的一個(gè)(他們四個(gè)人對(duì)這十部書閱讀本數(shù)各不相同).甲、乙、丙、丁按各人讀書本數(shù)由少到多的排列是( )
A. 乙甲丙丁 B. 甲丁乙丙 C. 丙甲丁乙 D. 甲丙乙丁
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知B為線段MN上一點(diǎn),|MN|=6,|BN|=2,動(dòng)圓C與MN相切于點(diǎn)B,分別過M,N作圓C的切線,兩切線交于點(diǎn)P.求點(diǎn)P的軌跡方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com