【題目】某科研機(jī)構(gòu)為了研究喝酒與糖尿病是否有關(guān),現(xiàn)對(duì)該市30名男性成人進(jìn)行了問(wèn)卷調(diào)查,并得到了如下列聯(lián)表,規(guī)定平均每天喝100ml以上的為常喝.已知在所有的30人中隨機(jī)抽取1人,是糖尿病的概率為.

常喝

不常喝

合計(jì)

有糖尿病

2

無(wú)糖尿病

18

合計(jì)

30

1)請(qǐng)將上表補(bǔ)充完整;

2)是否有的把握認(rèn)為糖尿病與喝酒有關(guān)?請(qǐng)說(shuō)明理由.

3)已知常喝酒且有糖尿病的人中恰有兩名女性,現(xiàn)從常喝酒且有糖尿病的人中隨機(jī)抽取2人,求恰好抽到一名男性和一名女性的概率.

參考公式:

參考數(shù)據(jù):

k

【答案】1)見(jiàn)詳解;(2)有的把握認(rèn)為糖尿病與喝酒有關(guān);(3

【解析】

1)由所有的30人中隨機(jī)抽取1人,是糖尿病的概率為,可得出糖尿病人有8人,據(jù)此完善整個(gè)列聯(lián)表;

2)計(jì)算觀測(cè)值,對(duì)照數(shù)表得出結(jié)論;

3)用列舉法,求出基本事件的個(gè)數(shù),從而求出正好抽到一男一女的概率.

解:(1所有的30人中隨機(jī)抽取1人,是糖尿病的概率為

30人中,有糖尿病的有

常喝

不常喝

合計(jì)

有糖尿病

6

2

8

無(wú)糖尿病

4

18

22

合計(jì)

10

20

30

2)由列聯(lián)表的數(shù)據(jù)可求得:

故有的把握認(rèn)為糖尿病與喝酒有關(guān);

(3)設(shè)常喝酒且有糖尿病的男性為A、B、C、D,女性為a,b,

則任取兩人有:AB,AC,ADAaAb,BCBD,BaBb,CD

Ca,Cb,Da,Db,ab,共15種,

其中一男一女有:AaAb,Ba,Bb Ca,CbDa,Db,

故抽到一男一女的概率是.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近期,某超市針對(duì)一款飲料推出刷臉支付活動(dòng),活動(dòng)設(shè)置了一段時(shí)間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來(lái)越多的人開(kāi)始使用刷臉支付.該超市統(tǒng)計(jì)了活動(dòng)剛推出一周內(nèi)每一天使用刷臉支付的人次,用表示活動(dòng)推出的天數(shù),表示每天使用刷臉支付的人次,統(tǒng)計(jì)數(shù)據(jù)如下表所示:

1)在推廣期內(nèi),均為大于零的常數(shù))哪一個(gè)適宜作為刷臉支付的人次關(guān)于活動(dòng)推出天數(shù)的回歸方程類型?(給出判斷即可,不必說(shuō)明理由);

2)根據(jù)(1)的判斷結(jié)果及表中的數(shù)據(jù),求關(guān)于的回歸方程,并預(yù)測(cè)活動(dòng)推出第天使用刷臉支付的人次;

3)已知一瓶該飲料的售價(jià)為元,顧客的支付方式有三種:現(xiàn)金支付、掃碼支付和刷臉支付,其中有使用現(xiàn)金支付,使用現(xiàn)金支付的顧客無(wú)優(yōu)惠;有使用掃碼支付,使用掃碼支付享受折優(yōu)惠;有使用刷臉支付,根據(jù)統(tǒng)計(jì)結(jié)果得知,使用刷臉支付的顧客,享受折優(yōu)惠的概率為,享受折優(yōu)惠的概率為,享受折優(yōu)惠的概率為.根據(jù)所給數(shù)據(jù)估計(jì)購(gòu)買(mǎi)一瓶該飲料的平均花費(fèi).

參考數(shù)據(jù):其中

參考公式:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計(jì)公式分別為:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

)求函數(shù)的單調(diào)區(qū)間和極值;

)已知函數(shù)的圖象與函數(shù)的圖象關(guān)于直線對(duì)稱,證明當(dāng)時(shí),

)如果,且,證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某家庭記錄了未使用節(jié)水龍頭50天的日用水量數(shù)據(jù)(單位:m3)和使用了節(jié)水龍頭50天的日用水量數(shù)據(jù),得到頻數(shù)分布表如下:

未使用節(jié)水龍頭50天的日用水量頻數(shù)分布表

日用

水量

頻數(shù)

1

3

2

4

9

26

5

使用了節(jié)水龍頭50天的日用水量頻數(shù)分布表

日用

水量

頻數(shù)

1

5

13

10

16

5

(1)在答題卡上作出使用了節(jié)水龍頭50天的日用水量數(shù)據(jù)的頻率分布直方圖:

2)估計(jì)該家庭使用節(jié)水龍頭后,日用水量小于0.35 m3的概率;

3)估計(jì)該家庭使用節(jié)水龍頭后,一年能節(jié)省多少水?(一年按365天計(jì)算,同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某快遞公司收取快遞費(fèi)用的標(biāo)準(zhǔn)是:重量不超過(guò)的包裹收費(fèi)10元;重量超過(guò)的包裹,除收費(fèi)10元之外,超過(guò)的部分,每超出(不足,按計(jì)算)需要再收費(fèi)5.該公司近60天每天攬件數(shù)量的頻率分布直方圖如下圖所示(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表).

1)求這60天每天包裹數(shù)量的平均值和中位數(shù);

2)該公司從收取的每件快遞的費(fèi)用中抽取5元作為前臺(tái)工作人員的工資和公司利潤(rùn),剩余的作為其他費(fèi)用.已知公司前臺(tái)有工作人員3人,每人每天工資100元,以樣本估計(jì)總體,試估計(jì)該公司每天的利潤(rùn)有多少元?

3)小明打算將四件禮物隨機(jī)分成兩個(gè)包裹寄出,且每個(gè)包裹重量都不超過(guò),求他支付的快遞費(fèi)為45元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系. 已知曲線的極坐標(biāo)方程為 ,直線 的參數(shù)方程為 (為參數(shù)).

(I)分別求曲線的直角坐標(biāo)方程和直線 的普通方程;

(II)設(shè)曲線和直線相交于兩點(diǎn),求弦長(zhǎng)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定點(diǎn)F(1,0),定直線,動(dòng)點(diǎn)M到點(diǎn)F的距離與到直線l的距離相等.

(1)求動(dòng)點(diǎn)M的軌跡方程;

(2)設(shè)點(diǎn),過(guò)點(diǎn)F作一條斜率大于0的直線交軌跡M于A,B兩點(diǎn),分別連接PA,PB,若直線PA與直線PB不關(guān)于x軸對(duì)稱,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一輛汽車前往目的地需要經(jīng)過(guò)個(gè)有紅綠燈的路口.汽車在每個(gè)路口遇到綠燈的概率為(可以正常通過(guò)),遇到紅燈的概率為(必須停車).假設(shè)汽車只有遇到紅燈或到達(dá)目的地才停止前進(jìn),用隨機(jī)變量表示前往目的地途中遇到紅燈數(shù)和綠燈數(shù)之差的絕對(duì)值.

1)求汽車在第個(gè)路口首次停車的概率;

2)求的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】集合A{x|2≤x≤5}B{x|m1≤x≤2m1}

(1)BA,求實(shí)數(shù)m的取值范圍;

(2)當(dāng)x∈Z時(shí),求A的非空真子集個(gè)數(shù);

查看答案和解析>>

同步練習(xí)冊(cè)答案