【題目】某大學(xué)生在開學(xué)季準(zhǔn)備銷售一種文具盒進(jìn)行試創(chuàng)業(yè),在一個(gè)開學(xué)季內(nèi),每售出1盒該產(chǎn)品獲利潤(rùn)30元,未售出的產(chǎn)品,每盒虧損10元.根據(jù)歷史資料,得到開學(xué)季市場(chǎng)需求量的頻率分布直方圖,如圖所示.該同學(xué)為這個(gè)開學(xué)季購(gòu)進(jìn)了160盒該產(chǎn)品,以(單位:盒, )表示這個(gè)開學(xué)季內(nèi)的市場(chǎng)需求量, (單位:元)表示這個(gè)開學(xué)季內(nèi)經(jīng)銷該產(chǎn)品的利潤(rùn).

(1)根據(jù)直方圖估計(jì)這個(gè)開學(xué)季內(nèi)市場(chǎng)需求量的平均數(shù);

(2)將表示為的函數(shù);

(3)根據(jù)直方圖估計(jì)利潤(rùn)不少于4000元的概率.

【答案】(1)153;(2) ;(3)0.7.

【解析】試題分析:(1)根據(jù)分布圖先算出各頻率,然后再計(jì)算求出平均數(shù)(2)分類討論當(dāng)時(shí)及當(dāng)時(shí)兩種情況,分別寫出解析式(3)代入求解結(jié)果即可

解析:(1)需求量為的頻率

需求量為的頻率

需求量為的頻率,

需求量為的頻率,

需求量為的頻率.

則平均數(shù).

(2)因?yàn)槊渴鄢?盒該產(chǎn)品獲利潤(rùn)30元,未售出的產(chǎn)品,每盒虧損10元,

所以當(dāng)時(shí), ,

當(dāng)時(shí), ,所以

(3)因?yàn)槔麧?rùn)不少于4000元,解得,解得.

所以由(1)知利潤(rùn)不少于4000元的概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),若函數(shù)內(nèi)有兩個(gè)極值點(diǎn),則實(shí)數(shù)的取值范圍是( )

A. B. (0,1)

C. (0,2) D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為比較甲、乙兩地某月12時(shí)的氣溫狀況,隨機(jī)選取該月中的5天,將這5天中12時(shí)的氣溫?cái)?shù)據(jù)(單位:)制成如圖所示的莖葉圖.考慮以下結(jié)論:

①甲地的平均氣溫低于乙地的平均氣溫;

②甲地的平均氣溫高于乙地的平均氣溫;

③甲地氣溫的標(biāo)準(zhǔn)差小于乙地氣溫的標(biāo)準(zhǔn)差;

④甲地氣溫的標(biāo)準(zhǔn)差大于乙地氣溫的標(biāo)準(zhǔn)差.

其中根據(jù)莖葉圖能得到的統(tǒng)計(jì)結(jié)論的標(biāo)號(hào)為( )

A. ①③ B. ①④ C. ②③ D. ②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在高中學(xué)習(xí)過(guò)程中,同學(xué)們常這樣說(shuō):“如果你的物理成績(jī)好,那么你的數(shù)學(xué)學(xué)習(xí)就不會(huì)有什么大問題.”某班針對(duì)“高中物理學(xué)習(xí)對(duì)數(shù)學(xué)學(xué)習(xí)的影響”進(jìn)行研究,得到了學(xué)生的物理成績(jī)與數(shù)學(xué)成績(jī)具有線性相關(guān)關(guān)系,如表為該班隨機(jī)抽取6名學(xué)生在一次考試中的物理和數(shù)學(xué)成績(jī):

學(xué)生編號(hào)

學(xué)科

1

2

3

4

5

6

物理成績(jī)(x

75

65

75

65

60

80

數(shù)學(xué)成績(jī)(y

125

117

110

103

95

110

(1)求數(shù)學(xué)成績(jī)y對(duì)物理成績(jī)x的線性回歸方程;

(2)該班某同學(xué)的物理成績(jī)100分,預(yù)測(cè)他的數(shù)學(xué)成績(jī).

參考公式:回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:

,

參考數(shù)據(jù):752+652+752+652+602+802=29700,

75×125+65×117+75×110+65×103+60×95+80×110=46425.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形是正方形, 平面, , , , , 分別為, , 的中點(diǎn).

1)求證: 平面;

2)求平面與平面所成銳二面角的大;

3)在線段上是否存在一點(diǎn),使直線與直線所成的角為?若存在,求出線段的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某經(jīng)濟(jì)開發(fā)區(qū)規(guī)劃要修建一地下停車場(chǎng),停車場(chǎng)橫截面是如圖所示半橢圓形AMB,其中AP為2百米,BP為4百米,M為半橢圓上異于A,B的一動(dòng)點(diǎn),且面積最大值為平方百米,如圖建系.

求出半橢圓弧的方程;

若要將修建地下停車場(chǎng)挖出的土運(yùn)到指定位置P處,N為運(yùn)土點(diǎn),以A,B為出口,要使運(yùn)土最省工,工程部需要指定一條分界線,請(qǐng)求出分界線所在的曲線方程;

若在半橢圓形停車場(chǎng)的上方修建矩形商場(chǎng),矩形的一邊CDAB平行,設(shè)百米,試確定t的值,使商場(chǎng)地面的面積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出集合

(1)求證:函數(shù)

(2)(1)可知,是周期函數(shù)且是奇函數(shù),于是張三同學(xué)得出兩個(gè)命題:

命題甲:集合M中的元素都是周期函數(shù);命題乙:集合M中的元素都是奇函數(shù),請(qǐng)對(duì)此給出判斷,如果正確,請(qǐng)證明;如果不正確,請(qǐng)舉出反例;

(3)設(shè)為常數(shù),的充要條件并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某車間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此作了四次試驗(yàn),得到的數(shù)據(jù)如下:

零件的個(gè)數(shù)(個(gè))

加工的時(shí)間(小時(shí))

(1)在給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點(diǎn)圖;

(2)求出關(guān)于的線性回歸方程.

(3)試預(yù)測(cè)加工個(gè)零件需要多少時(shí)間?

附錄:參考公式: ,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)是定義在 上的偶函數(shù),當(dāng)時(shí), ).

(1)當(dāng)時(shí),求的解析式;

(2)若,試判斷的上單調(diào)性,并證明你的結(jié)論;

(3)是否存在,使得當(dāng)時(shí), 有最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案