【題目】若直線 與直線2x+3y﹣6=0的交點(diǎn)位于第一象限,則直線l的傾斜角的取值范圍(
A.
B.
C.
D.

【答案】B
【解析】解:聯(lián)立兩直線方程得: , 將①代入②得:x= ③,把③代入①,求得y=
所以兩直線的交點(diǎn)坐標(biāo)為( , ),
因?yàn)閮芍本的交點(diǎn)在第一象限,所以得到 ,
由①解得:k>﹣ ;由②解得k> 或k<﹣ ,所以不等式的解集為:k> ,
設(shè)直線l的傾斜角為θ,則tanθ> ,所以θ∈( , ).
方法二、∵直線l恒過定點(diǎn)(0,﹣ ),作出兩直線的圖象.,
設(shè)直線2x+3y﹣6=0與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.從圖中看出,
斜率kAP<k<+∞,即 <k<+∞,
故直線l的傾斜角的取值范圍應(yīng)為( ).
故選B.
聯(lián)立兩直線方程到底一個二元一次方程組,求出方程組的解集即可得到交點(diǎn)的坐標(biāo),根據(jù)交點(diǎn)在第一象限得到橫縱坐標(biāo)都大于0,聯(lián)立得到關(guān)于k的不等式組,求出不等式組的解集即可得到k的范圍,然后根據(jù)直線的傾斜角的正切值等于斜率k,根據(jù)正切函數(shù)圖象得到傾斜角的范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線 (t為參數(shù)), (θ為參數(shù)),
(1)化C1 , C2的方程為普通方程,并說明它們分別表示什么曲線;
(2)若C1上的點(diǎn)P對應(yīng)的參數(shù)為 ,Q為C2上的動點(diǎn),求PQ中點(diǎn)M到直線 (t為參數(shù))距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 在△中, 點(diǎn)邊上, .

(Ⅰ)求

(Ⅱ)若△的面積是, 求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,我國電子商務(wù)蓬勃發(fā). 2016年“618”期間,某網(wǎng)購平臺的銷售業(yè)績高達(dá)516億元人民幣,與此同時,相關(guān)管理部門推出了針對該網(wǎng)購平臺的商品和服務(wù)的評價系統(tǒng). 評價系統(tǒng)中選出200次成功交易,并對其評價進(jìn)行統(tǒng)計(jì),網(wǎng)購者對商品的滿意率為0.6,對服務(wù)的滿意率為0.75,其中對商品和服務(wù)滿意的交易為80次.

(Ⅰ) 根據(jù)已知條件完成下面列聯(lián)表,并回答能有99%的把握認(rèn)為“網(wǎng)購者對商品滿意與服務(wù)滿意之間有關(guān)系”

對服務(wù)滿意

對服務(wù)不滿意

合計(jì)

對商品滿意

80

對商品不滿意

合計(jì)

200

(Ⅱ) 若將頻率視為概率,某人在該網(wǎng)購平臺上進(jìn)行的3次購物中,設(shè)對商品和服務(wù)滿意的次數(shù)為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.

附:(其中為樣本容量

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,角A、B、C的對邊分別為,已知向量且滿足

(1)求角A的大;

(2)試判斷的形狀

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,已知BC邊上的高所在直線的方程為x﹣2y+1=0,∠A平分線所在直線的方程為y=0,若點(diǎn)B的坐標(biāo)為(1,2), (Ⅰ)求直線BC的方程;
(Ⅱ)求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn . 若對任意正整數(shù)n,總存在正整數(shù)m,使得Sn=am , 則稱{an}是“H數(shù)列”.
(1)若數(shù)列{an}的前n項(xiàng)和Sn=2n(n∈N*),證明:{an}是“H數(shù)列”;
(2)設(shè){an}是等差數(shù)列,其首項(xiàng)a1=1,公差d<0.若{an}是“H數(shù)列”,求d的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》中有這樣一則問題:“今有良馬與弩馬發(fā)長安,至齊,齊去長安三千里,良馬初日行一百九十三里,日增一十三里;弩馬初日行九十七里,日減半里,良馬先至齊,復(fù)還迎弩馬.”則現(xiàn)有如下說法:

①弩馬第九日走了九十三里路;

②良馬前五日共走了一千零九十五里路;

③良馬和弩馬相遇時,良馬走了二十一日.

則以上說法錯誤的個數(shù)是( )個

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某校舉行的航天知識競賽中,參與競賽的文科生與理科生人數(shù)之比為,且成績分布在,分?jǐn)?shù)在以上(含的同學(xué)獲獎. 按文理科用分層抽樣的方法抽取人的成績作為樣本得到成績的頻率分布直方圖(見下圖).

(1)填寫下面的列聯(lián)表,能否有超過的把握認(rèn)為獲獎與學(xué)生的文理科有關(guān)?

(2)將上述調(diào)査所得的頻率視為概率,現(xiàn)從參賽學(xué)生中,任意抽取名學(xué)生獲獎學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.

文科生

理科生

合計(jì)

獲獎

不獲獎

合計(jì)

附表及公式:

,其中

查看答案和解析>>

同步練習(xí)冊答案