已知a>0且a≠1,設命題p:函數(shù)y=ax+1在R上單調遞減,命題q:曲線y=x2+(2a-3)x+1與x軸交于不同的兩點,如果“p∨q”為真,且“p∧q”為假,求a的取值范圍.
∵y=ax+1單調遞減
∴P:0<a<1
∵曲線y=x2+(2a-3)x+1與x軸交于不同的兩點
∴△=(2a-3)2-4>0
∴q:a
5
2
或a
1
2

∵“p∨q”為真,且“p∧q”為假
∴p真q假,或p假q真
當p真q假時,
0<a<1
a>
5
2
或a<
1
2

∴0<a<
1
2

當p假q真時,
a>1
a>
5
2
或a<
1
2

∴a
5
2

綜上可得,a
5
2
或0<a<
1
2
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知a>0且a≠1,設p:函數(shù)y=ax在R上單調遞增,q:設函數(shù)y=
2x-2a,(x≥2a)
2a,(x<2a)
,函數(shù)y≥1恒成立,若p∧q為假,p∨q為真,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•普陀區(qū)二模)已知a>0且a≠1,函數(shù)f(x)=loga(x+1),g(x)=loga
11-x
,記F(x)=2f(x)+g(x)
(1)求函數(shù)F(x)的定義域D及其零點;
(2)若關于x的方程F(x)-m=0在區(qū)間[0,1)內有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>0且a≠1,則使方程loga(x-ak)=loga2(x2-a2)有解時的k的取值范圍為
(-∞,-1)∪(0,1)
(-∞,-1)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>0且a≠1,函數(shù)f(x)=loga(x+1),g(x)=loga
11-x
,記F(x)=2f(x)+g(x)
(1)求函數(shù)F(x)的定義域D及其零點;
(2)試討論函數(shù)F(x)在定義域D上的單調性;
(3)若關于x的方程F(x)-2m2+3m+5=0在區(qū)間[0,1)內僅有一解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:普陀區(qū)二模 題型:解答題

已知a>0且a≠1,函數(shù)f(x)=loga(x+1),g(x)=loga
1
1-x
,記F(x)=2f(x)+g(x)
(1)求函數(shù)F(x)的定義域D及其零點;
(2)若關于x的方程F(x)-m=0在區(qū)間[0,1)內有解,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案