已知
m
=(asinx,cosx),
n
=(sinx,bsinx)
,其中a,b,x∈R.若f(x)=
m
n
滿足f(
π
6
)=2,且f(x)的圖象關(guān)于直線x=
π
3
對(duì)稱.
(Ⅰ)求a,b的值;
(Ⅱ)若關(guān)于x的方程f(x)+log2k=0在區(qū)間[0,
π
2
]上總有實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.
分析:(I)由已知中
m
=(asinx,cosx),
n
=(sinx,bsinx)
,f(x)=
m
n
,我們根據(jù)平面向量數(shù)量積公式,可以得到函數(shù)的解析式,(含參數(shù)a,b),進(jìn)而根據(jù)f(
π
6
)=2,且f(x)的圖象關(guān)于直線x=
π
3
對(duì)稱.我們可以構(gòu)造關(guān)于a,b的方程,解方程即可求出a,b的值.
(II)若關(guān)于x的方程f(x)+log2k=0在區(qū)間[0,
π
2
]上總有實(shí)數(shù)解,我們可以求出函數(shù)f(x)在區(qū)間[0,
π
2
]上的值域,構(gòu)造一個(gè)對(duì)數(shù)不等式,解不等式即可求出實(shí)數(shù)k的取值范圍.
解答:解:(Ⅰ)f(x)=
m
n
=asin2x+bsinxcosx
=
a
2
(1-cos2x)+
b
2
sin2x

f(
π
6
)=2
得,a+
3
b=8

∵f(x)的圖象關(guān)于x=
π
3
對(duì)稱,∴f(0)=f(
2
3
π)
b=
3
a

由①、②得,a=2,b=2
3

(Ⅱ)由(Ⅰ)得f(x)=1-cos2x+
3
sin2x
=2sin(2x-
π
6
)+1

x∈[0,
π
2
]
,-
π
6
≤2x-
π
6
6

-1≤2sin(2x-
π
6
)≤2
,f(x)∈[0,3].
又∵f(x)+log2k=0有解,即f(x)=-log2k有解,
∴-3≤log2k≤0,解得
1
8
≤k≤1
,即k∈[
1
8
,1]
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)y=Asin(ωx+φ)解析式的求法,正弦型函數(shù)的值域,及對(duì)數(shù)的性質(zhì),其中根據(jù)已知求出函數(shù)f(x)的解析式是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
m
=(asinx,cosx),
n
=(sinx,bsinx)
,其中a,b,x∈R.若f(x)=
m
n
滿足f(
π
6
)=2
,且f(x)的導(dǎo)函數(shù)f'(x)的圖象關(guān)于直線x=
π
12
對(duì)稱.
(Ⅰ)求a,b的值;
(Ⅱ)若關(guān)于x的方程f(x)+log2k=0在區(qū)間[0,
π
2
]
上總有實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•上海)定義向量
OM
=(a,b)的“相伴函數(shù)”為f(x)=asinx+bcosx,函數(shù)f(x)=asinx+bcosx的“相伴向量”為
OM
=(a,b)(其中O為坐標(biāo)原點(diǎn)).記平面內(nèi)所有向量的“相伴函數(shù)”構(gòu)成的集合為S.
(1)設(shè)g(x)=3sin(x+
π
2
)+4sinx,求證:g(x)∈S;
(2)已知h(x)=cos(x+α)+2cosx,且h(x)∈S,求其“相伴向量”的模;
(3)已知M(a,b)(b≠0)為圓C:(x-2)2+y2=1上一點(diǎn),向量
OM
的“相伴函數(shù)”f(x)在x=x0處取得最大值.當(dāng)點(diǎn)M在圓C上運(yùn)動(dòng)時(shí),求tan2x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知
m
=(asinx,cosx),
n
=(sinx,bsinx)
,其中a,b,x∈R.若f(x)=
m
n
滿足f(
π
6
)=2
,且f(x)的導(dǎo)函數(shù)f'(x)的圖象關(guān)于直線x=
π
12
對(duì)稱.
(Ⅰ)求a,b的值;
(Ⅱ)若關(guān)于x的方程f(x)+log2k=0在區(qū)間[0,
π
2
]
上總有實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知
m
=(asinx,cosx),
n
=(sinx,bsinx)
,其中a,b,x∈R.若f(x)=
m
n
滿足f(
π
6
)=2,且f(x)的圖象關(guān)于直線x=
π
3
對(duì)稱.
(Ⅰ)求a,b的值;
(Ⅱ)若關(guān)于x的方程f(x)+log2k=0在區(qū)間[0,
π
2
]上總有實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案