【題目】已知拋物線Cx22pyp0)的焦點到直線l2xy10的距離為

1)求拋物線的方程;

2)過點P0,t)(t0)的直線l與拋物線C交于A,B兩點,交x軸于點Q,若拋物線C上總存在點M(異于原點O),使得∠PMQ=∠AMB90°,求實數(shù)t的取值范圍.

【答案】1x2y;(2t≥1

【解析】

1)直接利用點到直線的距離公式計算得到答案.

2)過點P0t)(t0)的直線l的方程設(shè)為ykx+t,聯(lián)立方程,利用韋達定理得到x1+x2k,x1x2=﹣t,且y1x12,y2x22,根據(jù)∠PMQ=∠AMB90°,可得1,化簡得到答案.

1)拋物線Cx22pyp0)的焦點(0,)到直線l2xy10的距離為,

可得,解得p,即拋物線的方程為x2y;

2)過點P0t)(t0)的直線l的方程設(shè)為ykx+t,聯(lián)立x2y,可得x2kxt0

設(shè)Ax1,y1),Bx2,y2),可得k2+4t0,x1+x2k,x1x2=﹣t,且y1x12,y2x22,

設(shè)Mmm2),Q,0),

由∠PMQ=∠AMB90°,可得1,化為m3mt+m,①

1,即(m+x1)(m+x2)=﹣1,化為m2+kmt+10,②

由①②可得tk2m2

k241t≥0可得41tk2,

由于m≠0,m20,可得0解得t≥1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的定義域為,,使得不等式成立,關(guān)于的不等式的解集記為.

(1)若為真,求實數(shù)的取值集合;

(2)在(1)的條件下,若的充分不必要條件,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種產(chǎn)品的質(zhì)量以其質(zhì)量指標值衡量,并依據(jù)質(zhì)量指標值劃分等級如表:

質(zhì)量指標值m

25≤m35

15≤m25或35≤m45

0m15或45≤m≤65

等級

一等品

二等品

三等品

某企業(yè)從生產(chǎn)的這種產(chǎn)品中抽取100件產(chǎn)品作為樣本,檢測其質(zhì)量指標值,得到如圖所示的頻率分布直方圖.(同一組數(shù)據(jù)用該區(qū)間的中點值作代表):

1)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“一、二等品至少要占全部產(chǎn)品82%”的規(guī)定?

2)該企業(yè)為提高產(chǎn)品質(zhì)量,開展了“質(zhì)量提升月”活動,活動后再抽樣檢測,產(chǎn)品質(zhì)量指標值X近似滿足XN31,122),則“質(zhì)量提升月”活動后的質(zhì)量指標值的均值比活動前大約提升或降低多少?

3)若企業(yè)每件一等品售價180元,每件二等品售價150元,每件三等品售價120元,以樣本中的頻率代替相應(yīng)概率,現(xiàn)有一名顧客隨機購買兩件產(chǎn)品,設(shè)其支付的費用為X(單位:元),求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列有關(guān)命題的說法正確的是(

A.命題“若,則0”的否命題為“若,則0

B.命題“函數(shù)fx)=(a1xR上的增函數(shù)”的否定是“函數(shù)fx)=(a1xR上的減函數(shù)”

C.命題“在ABC中,若sinAsinB,則AB”的逆否命題為真命題

D.命題“若x2,則x23x+20”的逆命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面角坐標系中,以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,已知曲線的極坐標方程為,將曲線向左平移個單位長度得到曲線.

(1)求曲線的參數(shù)方程;

(2)已知為曲線上的動點, 兩點的極坐標分別為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面ABCD,,,

求證:平面PAC;

若側(cè)棱PC上的點F滿足,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國倉儲指數(shù)是反映倉儲行業(yè)經(jīng)營和國內(nèi)市場主要商品供求狀況與變化趨勢的已套指數(shù)體系.如圖所示的折線圖是2017年和2018年的中國倉儲指數(shù)走勢情況.根據(jù)該折線圖,下列結(jié)論中不正確的是( 。

A. 20181月至4月的倉儲指數(shù)比2017年同期波動性更大

B. 這兩年的最大倉儲指數(shù)都出現(xiàn)在4月份

C. 2018年全年倉儲指數(shù)平均值明顯低于2017

D. 2018年各倉儲指數(shù)的中位數(shù)與2017年各倉儲指數(shù)中位數(shù)差異明顯

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了變廢為寶,節(jié)約資源,新上了一個從生活垃圾中提煉生物柴油的項目.經(jīng)測算該項目月處理成本(元)與月處理量(噸)之間的函數(shù)關(guān)系可以近似地表示為:

,且每處理一噸生活垃圾,可得到能利用的生物柴油價值為200元,若該項目不獲利,政府將給予補貼.

1)當時,判斷該項目能否獲利?如果獲利,求出最大利潤;如果不獲利,則政府每月至少需要補貼多少元才能使該項目不虧損?

2)該項目每月處理量為多少噸時,才能使每噸的平均處理成本最低?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】朱世杰是元代著名數(shù)學(xué)家,他所著《算學(xué)啟蒙》是一部在中國乃至世界最早的科學(xué)普及著作.《算學(xué)啟蒙》中提到一些堆垛問題,如“三角垛果子”,就是將一樣大小的果子堆垛成正三棱錐,每層皆堆成正三角形,從上向下數(shù),每層果子數(shù)分別為1,3,6,10,…,現(xiàn)有一個“三角垛果子”,其最底層每邊果子數(shù)為10,則該層果子數(shù)為( 。

A. 50B. 55C. 100D. 110

查看答案和解析>>

同步練習(xí)冊答案