【題目】已知直線l與圓C:x2+y2+2x﹣4y+a=0相交于A,B兩點(diǎn),弦AB的中點(diǎn)為M(0,1).
(1)若圓C的半徑為 ,求實(shí)數(shù)a的值;
(2)若弦AB的長(zhǎng)為6,求實(shí)數(shù)a的值;
(3)當(dāng)a=1時(shí),圓O:x2+y2=2與圓C交于M,N兩點(diǎn),求弦MN的長(zhǎng).

【答案】
(1)解:圓C的標(biāo)準(zhǔn)方程為(x+1)2+(y﹣2)2=5﹣a

由圓的半徑為3可知,5﹣a=9,所以a=﹣4


(2)解:弦 ,解得a=﹣6

(3)解:當(dāng)a=1時(shí),圓C為x2+y2+2x﹣4y+1=0,

又圓P:P:x2+y2=2

所以兩圓的相交弦所在直線方程為2x﹣4y+3=0

圓心O到MN的距離為

所以


【解析】(1)根據(jù)已知由圓的標(biāo)準(zhǔn)方程求出結(jié)果。(2)由勾股定理可求出弦長(zhǎng)的一半,進(jìn)而得到弦 A B。(3)首先求出兩個(gè)圓相交的弦所在直線方程,根據(jù)圓心到直線的距離公式求出該距離,進(jìn)而得到 M N的值。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為響應(yīng)國(guó)家擴(kuò)大內(nèi)需的政策,某廠家擬在2016年舉行某一產(chǎn)品的促銷活動(dòng),經(jīng)調(diào)查測(cè)算,該產(chǎn)品的年銷量(即該廠的年產(chǎn)量)x萬(wàn)件與年促銷費(fèi)用t(t≥0)萬(wàn)元滿足x=4﹣ (k為常數(shù)).如果不搞促銷活動(dòng),則該產(chǎn)品的年銷量只能是1萬(wàn)件.已知2016年生產(chǎn)該產(chǎn)品的固定投入為6萬(wàn)元,每生產(chǎn)1萬(wàn)件該產(chǎn)品需要再投入12萬(wàn)元,廠家將每件產(chǎn)品的銷售價(jià)格定為每件產(chǎn)品平均生產(chǎn)投入成本的1.5倍(生產(chǎn)投入成本包括生產(chǎn)固定投入和生產(chǎn)再投入兩部分).
(1)求常數(shù)k,并將該廠家2016年該產(chǎn)品的利潤(rùn)y萬(wàn)元表示為年促銷費(fèi)用t萬(wàn)元的函數(shù);
(2)該廠家2016年的年促銷費(fèi)用投入多少萬(wàn)元時(shí),廠家利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一名大學(xué)生嘗試開家網(wǎng)店銷售一種學(xué)習(xí)用品,經(jīng)測(cè)算每售出1盒該產(chǎn)品可獲利30元,未售出的商品每盒虧損10元.根據(jù)統(tǒng)計(jì)資料,得到該商品的月需求量的頻率分布直方圖如圖所示,該同學(xué)為此購(gòu)進(jìn)180盒該產(chǎn)品,以x(單位:盒,100≤x≤200)表示一個(gè)月內(nèi)的市場(chǎng)需求量,y(單位:元)表示一個(gè)月內(nèi)經(jīng)銷該產(chǎn)品的利潤(rùn).

(1)根據(jù)直方圖估計(jì)這個(gè)月內(nèi)市場(chǎng)需求量x的平均數(shù);

(2)將y表示為x的函數(shù);

(3)根據(jù)直方圖估計(jì)這個(gè)月利潤(rùn)不少于3 800元的概率(用頻率近似概率).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{log2(an﹣1)}(n∈N*)為等差數(shù)列,且a1=3,a2=5,則 + +…+ )=( )
A.1
B.
C.2
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC中,BC邊上的高所在的直線方程為x﹣2y+1=0,∠A的平分線所在直線的方程為y=0.

(1)求點(diǎn)A的坐標(biāo);
(2)若點(diǎn)B的坐標(biāo)為(1,2),求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x|(x﹣3)(x﹣3a﹣5)<0},函數(shù)y=lg(﹣x2+5x+14)的定義域?yàn)榧螧.
(1)若a=4,求集合A∩B;
(2)若“x∈A”是“x∈B”的充分條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某創(chuàng)業(yè)投資公司擬開發(fā)某種新能源產(chǎn)品,估計(jì)能獲得萬(wàn)元到萬(wàn)元的投資利益,現(xiàn)準(zhǔn)備制定一個(gè)對(duì)科研課題組的獎(jiǎng)勵(lì)方案:獎(jiǎng)金(單位:萬(wàn)元)隨投資收益(單位:萬(wàn)元)的增加而增加,且獎(jiǎng)金不超過(guò)萬(wàn)元,同時(shí)獎(jiǎng)金不超過(guò)收益的

)請(qǐng)分析函數(shù)是否符合公司要求的獎(jiǎng)勵(lì)函數(shù)模型,并說(shuō)明原因.

)若該公司采用函數(shù)模型作為獎(jiǎng)勵(lì)函數(shù)模型,試確定最小正整數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有同一型號(hào)的電腦96臺(tái),為了了解這種電腦每開機(jī)一次所產(chǎn)生的輻射情況,從中抽取10臺(tái)在同一條件下做開機(jī)實(shí)驗(yàn),測(cè)量開機(jī)一次所產(chǎn)生的輻射,得到如下數(shù)據(jù):

13.7 12.9 14.4 13.8 13.3

12.7 13.5 13.6 13.1 13.4

(1)寫出采用簡(jiǎn)單隨機(jī)抽樣抽取上述樣本的過(guò)程;

(2)根據(jù)樣本,請(qǐng)估計(jì)總體平均數(shù)與總體標(biāo)準(zhǔn)差的情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形OABC的四個(gè)頂點(diǎn)坐標(biāo)分別為O(0,0)、A(6,2)、B(4,6)、C(2,6),直線ykx(<k<3)分四邊形OABC為兩部分,S表示靠近x軸一側(cè)的那一部分的面積.

(1)求Sf(k)的函數(shù)表達(dá)式;

(2)當(dāng)k為何值時(shí),直線ykx將四邊形OABC分為面積相等的兩部分?

查看答案和解析>>

同步練習(xí)冊(cè)答案