(1)(本小題滿分7分)選修4—2:矩陣與變換

已知二階矩陣有特征值及對應(yīng)的一個(gè)特征向量

(Ⅰ)求矩陣

(Ⅱ)設(shè)曲線在矩陣的作用下得到的方程為,求曲線的方程.

 

【答案】

解:(Ⅰ)=,∴

解得.                         …………………4分

(Ⅱ)設(shè)點(diǎn)為曲線上的任一點(diǎn),它在矩陣的作用下得到的點(diǎn)為,

,所以

代入,

所以所求的曲線方程為.     .…………………………7分

 

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)(本小題滿分7分)選修4-4:矩陣與變換

已知曲線繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)后可得到曲線

(I)求由曲線變換到曲線對應(yīng)的矩陣;   

(II)若矩陣,求曲線依次經(jīng)過矩陣對應(yīng)的變換變換后得到的曲線方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011屆廣東省南塘中學(xué)高三下學(xué)期期初考試數(shù)學(xué)理卷 題型:解答題

本題有⑴、⑵、⑶三個(gè)選考題,每題7分,請考生任選兩題作答,滿分14分,如果多做,則按所做的前兩題計(jì)分.
(1)(本小題滿分7分)選修4—2:矩陣與變換
已知二階矩陣M有特征值及對應(yīng)的一個(gè)特征向量,并且矩陣M對應(yīng)的變換將點(diǎn)變換成,求矩陣M。
(2)(本小題滿分7分)選修4—4:坐標(biāo)系與參數(shù)方程
過點(diǎn)M(3,4),傾斜角為的直線與圓C:為參數(shù))相交于A、B兩點(diǎn),試確定的值。
(3)(本小題滿分7分)選修4—5:不等式選講
已知實(shí)數(shù)滿足,試確定的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年高考試題分項(xiàng)版理科數(shù)學(xué)之專題十七 選修系列 題型:解答題

本題設(shè)有(1)(2)(3)三個(gè)選考題,每題7分,請考生任選2題作答,滿分14分。如果多做,則按所做的前兩題記分。作答時(shí),先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號(hào)涂黑,并將所選題號(hào)填入括號(hào)中。
(1)(本小題滿分7分)選修4-2:矩陣與變換
已知矩陣M=,N=,且MN=。
(Ⅰ)求實(shí)數(shù)a,b,c,d的值;(Ⅱ)求直線y=3x在矩陣M所對應(yīng)的線性變換作用下的像的方程。
(2)(本小題滿分7分)選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xOy中,直線L的參數(shù)方程為 (t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為=2sin
(Ⅰ)求圓C的直角坐標(biāo)方程;
(Ⅱ)設(shè)圓C與直線L交于點(diǎn)A,B。若點(diǎn)P的坐標(biāo)為(3,),求∣PA∣+∣PB∣。
(3)(本小題滿分7分)選修4-5:不等式選講
已知函數(shù)f(x)= ∣x-a∣.
(Ⅰ)若不等式f(x) 3的解集為,求實(shí)數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若f(x)+f(x+5)≥m對一切實(shí)數(shù)x恒成立,求實(shí)數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建省泉州市高三畢業(yè)班質(zhì)量檢查理科數(shù)學(xué)試卷(解析版) 題型:解答題

本題有(1)、(2)、(3)三個(gè)選答題,每小題7分,請考生任選2個(gè)小題作答,滿分14分.如果多做,則按所做的前兩題記分.作答時(shí),先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號(hào)涂黑,并將所選題號(hào)填入括號(hào)中.

(1)(本小題滿分7分)選修4—2:矩陣與變換

在平面直角坐標(biāo)系中,把矩陣確定的壓縮變換與矩陣確定的旋轉(zhuǎn)變換進(jìn)行復(fù)合,得到復(fù)合變換

(Ⅰ)求復(fù)合變換的坐標(biāo)變換公式;

(Ⅱ)求圓在復(fù)合變換的作用下所得曲線的方程.

(2)(本小題滿分7分)選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),、分別為直線軸、軸的交點(diǎn),線段的中點(diǎn)為

(Ⅰ)求直線的直角坐標(biāo)方程;

(Ⅱ)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,求點(diǎn)的極坐標(biāo)和直線的極坐標(biāo)方程.

(3)(本小題滿分7分)選修4—5:不等式選講

已知不等式的解集與關(guān)于的不等式的解集相等.

(Ⅰ)求實(shí)數(shù)的值;

(Ⅱ)求函數(shù)的最大值,以及取得最大值時(shí)的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省高三下學(xué)期期初考試數(shù)學(xué)理卷 題型:解答題

本題有⑴、⑵、⑶三個(gè)選考題,每題7分,請考生任選兩題作答,滿分14分,如果多做,則按所做的前兩題計(jì)分.

(1)(本小題滿分7分)選修4—2:矩陣與變換

已知二階矩陣M有特征值及對應(yīng)的一個(gè)特征向量,并且矩陣M對應(yīng)的變換將點(diǎn)變換成,求矩陣M。

(2)(本小題滿分7分)選修4—4:坐標(biāo)系與參數(shù)方程

過點(diǎn)M(3,4),傾斜角為的直線與圓C:為參數(shù))相交于A、B兩點(diǎn),試確定的值。

(3)(本小題滿分7分)選修4—5:不等式選講

已知實(shí)數(shù)滿足,,試確定的最大值。

 

 

查看答案和解析>>

同步練習(xí)冊答案