(本小題滿分14分)設拋物線的方程為為直線上任意一點,過點作拋物線的兩條切線,切點分別為,.

(1)當的坐標為時,求過三點的圓的方程,并判斷直線與此圓的位置關系;

(2)求證:直線恒過定點;

(3)當變化時,試探究直線上是否存在點,使為直角三角形,若存在,有幾個這樣的點,若不存在,說明理由.

 

 

【答案】

解:(1)當的坐標為時,設過點的切線方程為,代入,整理得,

,解得,

代入方程得,故得,       .................2分

因為的中點的距離為

從而過三點的圓的方程為

易知此圓與直線相切.              ..................4分

(2)證法一:設切點分別為,,過拋物線上點的切線方程為,代入,整理得    

,又因為,所以................5分

從而過拋物線上點的切線方程為

又切線過點,所以得    ①   即

同理可得過點的切線為

又切線過點,所以得    ②   即.................6分

即點,均滿足,故直線的方程為                                  .................7分

為直線上任意一點,故對任意成立,所以,從而直線恒過定點       ..................8分

證法二:設過的拋物線的切線方程為,代入,消去,得    

即:.................5分

從而,此時,

所以切點的坐標分別為,.................6分

因為,,

所以的中點坐標為

故直線的方程為,即...............7分

為直線上任意一點,故對任意成立,所以,從而直線恒過定點       ..................8分

證法三:由已知得,求導得,切點分別為,,故過點的切線斜率為,從而切線方程為

又切線過點,所以得    ①   即

同理可得過點的切線為,

又切線過點,所以得    ②  

.................6分

即點均滿足,故直線的方程為                     .................7分

為直線上任意一點,故對任意成立,所以,從而直線恒過定點       ..................8分

(3)解法一:由(2)中①②兩式知是方程的兩實根,故有

(*)

,,代入上(*)式得

,     .................9分

①當時,,直線上任意一點均有,為直角三角形;                                                 .................10分

②當時,,,不可能為直角三角形;

                                                .................11分

③當時,,.

因為,

所以

,則,整理得,

又因為,所以

因為方程有解的充要條件是.

所以當時,有,為直角三角形..............13分

綜上所述,當時,直線上任意一點,使為直角三角形,當時,直線上存在兩點,使為直角三角形;當時,不是直角三角形.

.................14分

解法二:由(2)知,是方程的兩實根,即,從而,

所以

時,即時,直線上任意一點均有為直角三角形;                                                 .................10分

時,即時,不垂直。

因為,,

所以

,則,整理得,

又因為,所以,

因為方程有解的充要條件是.

所以當時,有,為直角三角形..............13分

綜上所述,當時,直線上任意一點,使為直角三角形,當時,直線上存在兩點,使為直角三角形;當時,不是直角三角形.

.................14分

 

【解析】略

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達式,并求f(x)的最小正周期;
(II)當x∈[0,
π
2
]  時,求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分14分)設橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江西省撫州市教研室高二上學期期末數(shù)學理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設,求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源:2015屆山東省威海市高一上學期期末考試數(shù)學試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對一應季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關于第天的函數(shù)關系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣東省高三下學期第一次月考文科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點處的切線與直線平行.

⑴ 求,滿足的關系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習冊答案