已知數(shù)列{an}滿足an+1=
an+1,n為奇數(shù)
-2an,n為偶數(shù)
,且a1=1,設(shè)bn=a2n+2-a2n,則數(shù)列{bn}的通項(xiàng)公式為
 
考點(diǎn):數(shù)列遞推式
專(zhuān)題:綜合題,點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:由{an}的遞推關(guān)系,算出a2n+2=-2a2n+1,從而得到bn=-3a2n+1,進(jìn)而有bn+1=6a2n-2=-2bn,所以{bn}構(gòu)成首項(xiàng)是-5,公比為-2的等比數(shù)列,根據(jù)等比數(shù)列通項(xiàng)公式可算出數(shù)列{bn}的通項(xiàng)公式.
解答: 解:根據(jù)題意,得a2n+2=a2n+1+1=-2a2n+1,
∴bn=a2n+2-a2n=-3a2n+1,
從而bn+1=-3a2n+2+1=-3(-2a2n+1)+1=6a2n-2,
∴bn+1=-2bn,
a2=a1+1=a1+1=2,a4=-2a2+1=-3
∴可得{bn}構(gòu)成首項(xiàng)b1=a4-a2=-5,公比為-2的等比數(shù)列,
因此,數(shù)列{bn}的通項(xiàng)公式為bn=-5(-2)n-1
故答案為:bn=-5(-2)n-1
點(diǎn)評(píng):本題給出數(shù)列{an}遞推式,求數(shù)列bn=a2n+2-a2n的通項(xiàng)公式,著重考查了數(shù)列遞推關(guān)系和等比數(shù)列的通項(xiàng)公式等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是定義在[-1,1]上的奇函數(shù),f(-1)=-1,且對(duì)任意a,b∈[-1,1],當(dāng)a≠b時(shí),都有
f(a)-f(b)
a-b
>0;
(1)解不等式f(x-
1
2
<f(2x-
1
4
)
);
(2)設(shè)p={x|y=f(x-c)},Q={x|y=f(x-c2)}且P∩Q=∅,求c的取值范圍.
(3)若f(x)≤m2-2km+1對(duì)所有x∈[-1,1],k∈[-1,1]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知,在正方體ABCD-A1B1C1D1中,E、F分別是CC1、AA1的中點(diǎn),求證:平面BDE∥平面B1D1F.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知曲線C的極坐標(biāo)方程為:ρ2-2ρcosθ-4ρsinθ+4=0,曲線C上的任意一個(gè)點(diǎn)P的直角坐標(biāo)為(x,y),則3x+4y的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l經(jīng)過(guò)點(diǎn)(
1
2
,2),其橫截距與縱截距分別為a、b(a、b均為正數(shù)),則使a+b≥c恒成立的c的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)P(1,-2)到拋物線y2=4x的焦點(diǎn)F的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線
x2
4
-
y2
m
=1
的焦距為4
2
,則m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P是曲線C:
x=4cosθ
y=3sinθ
(θ為參數(shù),π≤θ≤2π)上一點(diǎn),O為原點(diǎn).若直線OP的傾斜角為
π
4
,則點(diǎn)P的直角坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2+ax+1,若f(x)>0恒成立,則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案