已知如圖四棱錐P-ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1,BC=2,又PB⊥平面ABCD,且PB=1,點(diǎn)E在棱PD上.

(1)求異面直線PA與CD所成的角的大小;

(2)在棱PD上是否存在一點(diǎn)E,使BE⊥平面PCD?;

(3)求二面角A-PD-B的大。

答案:
解析:

  解:如圖,以B為原點(diǎn),分別以BC、BA、BP為x,y、z軸,建立空間直角坐標(biāo)系,則

  

  (1)

  

  

  (2)可設(shè),則,由

  (3)設(shè)平面PAD的一個(gè)法向量為

  令,設(shè)平面PBD的法向量為

   令

   

  又二面角A-PD-B為銳二面角,故二面角A-PD-B的大小為


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:0108 模擬題 題型:解答題

已知如圖四棱錐P-ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1,BC=2,又PB⊥平面ABCD,且PB=1,點(diǎn)E在棱PD上,且DE=2PE,
(Ⅰ)求異面直線PA與CD所成的角的大。
(Ⅱ)求證:BE⊥平面PCD;
(Ⅲ)求二面角A-PD-B的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

已知如圖四棱錐P—ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1,BC=2,又PB⊥平面ABCD,且PB=1,點(diǎn)E在棱PD上,且DE=2PE.

(I)求異面直線PA與CD所成的角的大;

(II)求證:BE⊥平面PCD;

(III)求二面角A—PD—B的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分12分)

已知如圖四棱錐P—ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1,BC=2,又PB⊥平面ABCD,且PB=1,點(diǎn)E在棱PD上,且DE=2PE.

(I)求異面直線PA與CD所成的角的大小;

(II)求證:BE⊥平面PCD;

(III)求二面角A—PD—B的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:浙江省菱湖中學(xué)2010-2011學(xué)年高三10月月考數(shù)學(xué)理 題型:解答題

 

已知如圖四棱錐P—ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1,BC=2,又PB⊥平面ABCD,且PB=1,點(diǎn)E在棱PD上,且DE=2PE.

(1)求異面直線PA與CD所成的角的大;

    (2)求證:BE⊥平面PCD;

    (3)求二面角A—PD—B的大小.

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊答案