(本小題滿分14分)
已知函數(shù)
(1)設
在
處取得極值,且
,求
的值,并說明
是極大值點還是極小值點;
(2)求證:
試題分析:(1)
∴
∴
∴
∴
即
又
∴
(2)
又∵
∴
得:
∴
其中
中
單調遞增
又∵
由二分法知:
∴
點評:此題主要考查函數(shù)在某點取得極值的條件:極值點的導數(shù)為0,但導數(shù)為0的點不一定是極值點?疾榈闹R點比較全面,綜合性比較強,是一道中檔題,也是高考的熱點問題。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分13分)
設函數(shù)
的導函數(shù)為
,且
。
(Ⅰ)求函數(shù)
的圖象在x=0處的切線方程;
(Ⅱ)求函數(shù)
的極值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分) 已知函數(shù)
在
處有極值.
(Ⅰ)求實數(shù)
值;
(Ⅱ)求函數(shù)
的單調區(qū)間;
(Ⅲ)試問是否存在實數(shù)
,使得不等式
對任意
及
恒成立?若存在,求出
的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
函數(shù)
在實數(shù)集上是增函數(shù),則
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(滿分12分)
已知函數(shù)
.
(1)判斷并證明函數(shù)
的單調性;
(2)若函數(shù)
為奇函數(shù),求
的值;
(3)在(2)的條件下,若
對
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知定義在
上的函數(shù)
滿足
,
,則不等式
的解集為_
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知函數(shù)
恒成立,則k的取值范圍為
。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知
,
,
,則
的最值是( )
A.最大值為3,最小值 | B.最大值為,無最小值 |
C.最大值為3,無最小值 | D.既無最大值,也無最小值 |
查看答案和解析>>