從區(qū)間[0,10]中任取一個整數(shù)a,則a∈[3,6]的概率是
 
考點(diǎn):幾何概型
專題:概率與統(tǒng)計
分析:求出a構(gòu)成的區(qū)域長度,再求出在區(qū)間[0,10]上任取一個數(shù)a構(gòu)成的區(qū)域長度,再求兩長度的比值.
解答: 解:由題意,區(qū)間[0,10]中任取一個整數(shù)a,區(qū)間長度為10,a∈[3,6]的區(qū)間長度為3,所以a∈[3,6]的概率為
3
10
;
故答案為:
3
10
點(diǎn)評:本題考查幾何概型的運(yùn)算,思路是先求得試驗的全部構(gòu)成的集合用區(qū)域的長度、面積或者體積表示和構(gòu)成事件的區(qū)域長度、面積、體積,再求比值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C的焦點(diǎn)為F1(-2,0),F(xiàn)2(2,0),且離心率為2;
(Ⅰ)求雙曲線的標(biāo)準(zhǔn)方程;
(Ⅱ)若經(jīng)過點(diǎn)M(1,3)的直線l交雙曲線C于A,B兩點(diǎn),且M為AB的中點(diǎn),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)滿足f(x)+1=
1
f(x+1)
,當(dāng)x∈[0,1]時,f(x)=x,若在區(qū)間(-1,1]內(nèi),函數(shù)g(x)=f(x)-logm(x+2)有兩個零點(diǎn),則實(shí)數(shù)m的取值范圍是(  )
A、(0,
1
3
B、(0,
1
3
]
C、[3,+∞)
D、(1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

ABC是單位圓上不重合的三點(diǎn),對任意正數(shù)x,
OA
=2
OB
+x
OC
,則x的取值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列an的前n項和Sn=
3n2-n
2
,n∈N+
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列bn滿足:bn=
1
3
(an+2)•2n,n∈N+,試求{bn}的前n項和公式Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,橢圓C的焦點(diǎn)為F1(-4,0)、F2(4,0),且經(jīng)過點(diǎn)P(3,1).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)M在橢圓C上,且
OM
=
1
2
PF1
PF2
,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a,b,c,d∈R,a>b,c>d,則下列不等式成立的是( 。
A、ac>bd
B、a2>b2
C、c2≥d2
D、a-d>b-c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

平面內(nèi)給定三個向量
a
=(3,2),
b
=(-1,2),
c
=(4,1).
(1)能否以
b
、
c
作基底,表示a?若能,請寫出表達(dá)式;
(2)若(
a
+k
c
)∥(2
b
-
a
),求實(shí)數(shù)k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(1,1)=1,f(m,n)∈N+(m,n∈N+)且對任意m,n∈N+都有
①f(m,n+1)=f(m,n)+2;②f(m+1,1)=3f(m,1),則f(4,5)的值為( 。
A、33B、35C、87D、89

查看答案和解析>>

同步練習(xí)冊答案