【題目】已知數(shù)列{an}滿足 是等差數(shù)列,且b1=a1 , b4=a3
(1)求數(shù)列{an}和{bn}的通項公式;
(2)若 ,求數(shù)列{cn}的前n項和Tn

【答案】
(1)解:Sn=2an﹣1,n≥2時,Sn1=2an1﹣1,∴an=Sn﹣Sn1=2an﹣2an1,即an=2an1

當(dāng)n=1時,S1=a1=2a1﹣1,∴a1=1,

∴an是以1為首項,2為公比的等比數(shù)列,

,

b1=a1=1,b4=a3=4,∴公差= =1.

bn=1+(n﹣1)=n


(2)解: ,


【解析】(1)利用遞推關(guān)系、等差數(shù)列與等比數(shù)列的通項公式即可得出.(2)利用“裂項求和”方法、等比數(shù)列的求和公式即可得出.
【考點精析】解答此題的關(guān)鍵在于理解數(shù)列的前n項和的相關(guān)知識,掌握數(shù)列{an}的前n項和sn與通項an的關(guān)系,以及對數(shù)列的通項公式的理解,了解如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若定義在[﹣m,m](m>0)上的函數(shù)f(x)= +xcosx(a>0,a≠1)的最大值和最小值分別是M、N,則M+N=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是由圓柱與圓錐組合而成的幾何體的三視圖,則該幾何體的表面積為(

A.20π
B.24π
C.28π
D.32π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時,f(x)=x﹣1,則不等式f(x)<0的解集為(

A.(﹣∞,﹣1)∪(0,1)
B.(﹣∞,﹣1)∪(1,+∞)
C.(﹣1,1)
D.(﹣1,0)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為推行新課堂教學(xué)法,某化學(xué)老師分別用傳統(tǒng)教學(xué)和新課堂兩種不同的教學(xué)方式,在甲、乙兩個平行班級進行教學(xué)實驗,為了比較教學(xué)效果,期中考試后,分別從兩個班級中各隨機抽取20名學(xué)生的成績進行統(tǒng)計,結(jié)果如下表:記成績不低于70分者為成績優(yōu)良”.

分數(shù)

[50,59)

[60,69)

[70,79)

[80,89)

[90,100]

甲班頻數(shù)

5

6

4

4

1

乙班頻數(shù)

1

3

6

5

5

(1)由以上統(tǒng)計數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷成績優(yōu)良與教學(xué)方式是否有關(guān)”?

甲班

乙班

總計

成績優(yōu)良

成績不優(yōu)良

總計

現(xiàn)從上述40人中,學(xué)校按成績是否優(yōu)良采用分層抽樣的方法抽取8人進行考核.在這8人中,記成績不優(yōu)良的乙班人數(shù)為,求的分布列及數(shù)學(xué)期望.

附: 臨界值表

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程是,以極點為原點,極軸為軸的正半軸建立平面直角坐標(biāo)系,直線的參數(shù)方程為 (為參數(shù)).

(I)寫出直線的一般方程與曲線的直角坐標(biāo)方程,并判斷它們的位置關(guān)系;

(II)將曲線向左平移個單位長度,向上平移個單位長度,得到曲線,設(shè)曲線經(jīng)過伸縮變換得到曲線,設(shè)曲線上任一點為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線平面,直線平面,有以下四個命題:( )

;②;③;④

其中正確命題的序號為

A. ②④ B. ③④ C. ①③ D. ①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E: =1(a>b>0)的焦距為2 ,其上下頂點分別為C1 , C2 , 點A(1,0),B(3,2),AC1⊥AC2
(1)求橢圓E的方程及離心率;
(2)點P的坐標(biāo)為(m,n)(m≠3),過點A任意作直線l與橢圓E相交于點M,N兩點,設(shè)直線MB,BP,NB的斜率依次成等差數(shù)列,探究m,n之間是否滿足某種數(shù)量關(guān)系,若是,請給出m,n的關(guān)系式,并證明;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是指空氣中直徑小于或等于微米的顆粒物(也稱可入肺顆粒物).為了探究車流量與的濃度是否相關(guān),現(xiàn)采集到某城市周一至周五某一時間段車流量與的數(shù)據(jù)如下表:

時間

周一

周二

周三

周四

周五

車流量(萬輛)

的濃度微克/立方米

Ⅰ)根據(jù)上表數(shù)據(jù),請在所給的坐標(biāo)系中畫出散點圖;

Ⅱ)根據(jù)上表數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程

Ⅲ)若周六同一時間段的車流量是萬輛,試根據(jù)(Ⅱ)求出的線性回歸方程,預(yù)測此時的濃度為多少(保留整數(shù))?

參考公式:由最小二乘法所得回歸直線的方程是:

其中

查看答案和解析>>

同步練習(xí)冊答案